000021269 001__ 21269
000021269 005__ 20230426083034.0
000021269 0247_ $$2DOI$$a10.1103/PhysRevB.85.235103
000021269 0247_ $$2WOS$$aWOS:000304748900001
000021269 0247_ $$2Handle$$a2128/10861
000021269 037__ $$aPreJuSER-21269
000021269 041__ $$aeng
000021269 082__ $$a530
000021269 084__ $$2WoS$$aPhysics, Condensed Matter
000021269 1001_ $$0P:(DE-Juel1)VDB78175$$aThiess, A.$$b0$$uFZJ
000021269 245__ $$aMassively parallel density functional calculations for thousands of atoms: KKRnano
000021269 260__ $$aCollege Park, Md.$$bAPS$$c2012
000021269 300__ $$a235103
000021269 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021269 3367_ $$2DataCite$$aOutput Types/Journal article
000021269 3367_ $$00$$2EndNote$$aJournal Article
000021269 3367_ $$2BibTeX$$aARTICLE
000021269 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021269 3367_ $$2DRIVER$$aarticle
000021269 440_0 $$04919$$aPhysical Review B$$v85$$x1098-0121$$y23
000021269 500__ $$3POF3_Assignment on 2016-02-29
000021269 500__ $$aWe like to thank W. Lambrecht and P. Mavropoulos for fruitful discussions. Financial support of the DAAD and both computational resources as well as technical support of the Julich Supercomputing Center are gratefully acknowledged. This work benefited from discussions within the SFB 917 Nanoswitches.
000021269 520__ $$aApplications of existing precise electronic-structure methods based on density functional theory are typically limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in material science, e. g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-Kohn-Rostoker (KKR) Green's-function method. We conceptualized, developed, and optimized KKRnano for large-scale applications of many thousands of atoms without compromising on the precision of a full-potential all-electron method, i.e., it is a method without any shape approximation of the charge density or potential. A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers. The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the KKR Green's-function approach by introducing a truncation of the electron scattering to a local cluster of atoms, the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling calculations of more than 16 000 NiPd atoms.
000021269 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000021269 536__ $$0G:(DE-Juel1)jiff02_20090701$$aQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen (jiff02_20090701)$$cjiff02_20090701$$fQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen$$x1
000021269 542__ $$2Crossref$$i2012-06-04$$uhttp://link.aps.org/licenses/aps-default-license
000021269 588__ $$aDataset connected to Web of Science
000021269 650_7 $$2WoSType$$aJ
000021269 7001_ $$0P:(DE-Juel1)131057$$aZeller, R.$$b1$$uFZJ
000021269 7001_ $$0P:(DE-HGF)0$$aBolten, M.$$b2
000021269 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b3$$uFZJ
000021269 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b4$$uFZJ
000021269 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.85.235103$$bAmerican Physical Society (APS)$$d2012-06-04$$n23$$p235103$$tPhysical Review B$$v85$$x1098-0121$$y2012
000021269 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.85.235103$$gVol. 85, p. 235103$$n23$$p235103$$q85<235103$$tPhysical review / B$$v85$$x1098-0121$$y2012
000021269 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.85.235103
000021269 8564_ $$uhttps://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.pdf$$yOpenAccess
000021269 8564_ $$uhttps://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.gif?subformat=icon$$xicon$$yOpenAccess
000021269 8564_ $$uhttps://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000021269 8564_ $$uhttps://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000021269 8564_ $$uhttps://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000021269 909CO $$ooai:juser.fz-juelich.de:21269$$pdnbdelivery$$pVDB$$pdriver$$popenaire$$popen_access
000021269 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021269 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000021269 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021269 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021269 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021269 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021269 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000021269 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021269 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021269 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000021269 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021269 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021269 9141_ $$y2012
000021269 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000021269 9131_ $$0G:(DE-Juel1)jiff02_20090701$$aDE-HGF$$vQuantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen$$x1
000021269 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000021269 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000021269 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000021269 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000021269 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000021269 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$gPGI$$kPGI-2$$lTheoretische Nanoelektronik$$x4
000021269 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x5
000021269 970__ $$aVDB:(DE-Juel1)137211
000021269 980__ $$aI:(DE-82)080012_20140620
000021269 9801_ $$aFullTexts
000021269 980__ $$aVDB
000021269 980__ $$aConvertedRecord
000021269 980__ $$ajournal
000021269 980__ $$aI:(DE-Juel1)PGI-1-20110106
000021269 980__ $$aI:(DE-Juel1)IAS-1-20090406
000021269 980__ $$aI:(DE-82)080009_20140620
000021269 980__ $$aI:(DE-Juel1)VDB1045
000021269 980__ $$aI:(DE-Juel1)PGI-2-20110106
000021269 980__ $$aUNRESTRICTED
000021269 981__ $$aI:(DE-Juel1)IAS-1-20090406
000021269 981__ $$aI:(DE-Juel1)VDB1045
000021269 981__ $$aI:(DE-Juel1)PGI-2-20110106
000021269 981__ $$aI:(DE-Juel1)VDB881
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/PTP.46.77
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/72/8/086501
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/11690320_3
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0965-0393/13/1/R01
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.cpc.2007.02.075
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1839852
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/302
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.075131
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.75.2867
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4203
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/20/29/294215
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.245101
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.235129
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/304
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.11502
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.53.2571
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/1/49/009
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.8807
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1137/0907058
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01385726
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1137/0914029
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(02)00469-1
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.laa.2011.05.019
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/cpe.1556
000021269 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.3168