001     21269
005     20230426083034.0
024 7 _ |2 DOI
|a 10.1103/PhysRevB.85.235103
024 7 _ |2 WOS
|a WOS:000304748900001
024 7 _ |2 Handle
|a 2128/10861
037 _ _ |a PreJuSER-21269
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB78175
|a Thiess, A.
|b 0
|u FZJ
245 _ _ |a Massively parallel density functional calculations for thousands of atoms: KKRnano
260 _ _ |a College Park, Md.
|b APS
|c 2012
300 _ _ |a 235103
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4919
|a Physical Review B
|v 85
|x 1098-0121
|y 23
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We like to thank W. Lambrecht and P. Mavropoulos for fruitful discussions. Financial support of the DAAD and both computational resources as well as technical support of the Julich Supercomputing Center are gratefully acknowledged. This work benefited from discussions within the SFB 917 Nanoswitches.
520 _ _ |a Applications of existing precise electronic-structure methods based on density functional theory are typically limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in material science, e. g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-Kohn-Rostoker (KKR) Green's-function method. We conceptualized, developed, and optimized KKRnano for large-scale applications of many thousands of atoms without compromising on the precision of a full-potential all-electron method, i.e., it is a method without any shape approximation of the charge density or potential. A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers. The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the KKR Green's-function approach by introducing a truncation of the electron scattering to a local cluster of atoms, the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling calculations of more than 16 000 NiPd atoms.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)jiff02_20090701
|a Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen (jiff02_20090701)
|c jiff02_20090701
|f Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen
|x 1
542 _ _ |i 2012-06-04
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)131057
|a Zeller, R.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Bolten, M.
|b 2
700 1 _ |0 P:(DE-Juel1)130612
|a Dederichs, P. H.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)130548
|a Blügel, S.
|b 4
|u FZJ
773 1 8 |a 10.1103/physrevb.85.235103
|b American Physical Society (APS)
|d 2012-06-04
|n 23
|p 235103
|3 journal-article
|2 Crossref
|t Physical Review B
|v 85
|y 2012
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.85.235103
|g Vol. 85, p. 235103
|0 PERI:(DE-600)2844160-6
|n 23
|q 85<235103
|p 235103
|t Physical review / B
|v 85
|y 2012
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.85.235103
856 4 _ |u https://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21269/files/PhysRevB.85.235103.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:21269
|p open_access
|p openaire
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)jiff02_20090701
|a DE-HGF
|v Quantensimulation f\u00fcr realistische Grenzfl\u00e4chen in Nanosystemen
|x 1
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|g JARA
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|g PGI
|k PGI-2
|l Theoretische Nanoelektronik
|x 4
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 5
970 _ _ |a VDB:(DE-Juel1)137211
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a I:(DE-Juel1)PGI-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IAS-1-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)PGI-2-20110106
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1143/PTP.46.77
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/72/8/086501
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/11690320_3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0965-0393/13/1/R01
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.cpc.2007.02.075
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1839852
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.075131
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.75.2867
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.4203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/20/29/294215
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.245101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.235129
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/304
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.11502
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.53.2571
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/1/49/009
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.8807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1137/0907058
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/BF01385726
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1137/0914029
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0010-4655(02)00469-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.laa.2011.05.019
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/cpe.1556
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.76.3168
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21