
PHYSICAL REVIEW B 85, 235103 (2012)

Massively parallel density functional calculations for thousands of atoms: KKRnano

A. Thiess,1,2,* R. Zeller,1 M. Bolten,3 P. H. Dederichs,4 and S. Blügel1,4

1Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
2German Research School for Simulation Sciences, D-52425 Jülich, Germany

3Department of Mathematics and Science, University of Wuppertal, D-42097 Wuppertal, Germany
4Peter Grünberg Institut, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

(Received 25 January 2012; published 4 June 2012)

Applications of existing precise electronic-structure methods based on density functional theory are typically

limited to the treatment of about 1000 inequivalent atoms, which leaves unresolved many open questions in

material science, e.g., on complex defects, interfaces, dislocations, and nanostructures. KKRnano is a new

massively parallel linear scaling all-electron density functional algorithm in the framework of the Korringa-

Kohn-Rostoker (KKR) Green’s-function method. We conceptualized, developed, and optimized KKRnano for

large-scale applications of many thousands of atoms without compromising on the precision of a full-potential

all-electron method, i.e., it is a method without any shape approximation of the charge density or potential.

A key element of the new method is the iterative solution of the sparse linear Dyson equation, which we

parallelized atom by atom, across energy points in the complex plane and for each spin degree of freedom using

the message passing interface standard, followed by a lower-level OpenMP parallelization. This hybrid four-level

parallelization allows for an efficient use of up to 100 000 processors on the latest generation of supercomputers.

The iterative solution of the Dyson equation is significantly accelerated, employing preconditioning techniques

making use of coarse-graining principles expressed in a block-circulant preconditioner. In this paper, we will

describe the important elements of this new algorithm, focusing on the parallelization and preconditioning and

showing scaling results for NiPd alloys up to 8192 atoms and 65 536 processors. At the end, we present an

order-N algorithm for large-scale simulations of metallic systems, making use of the nearsighted principle of the

KKR Green’s-function approach by introducing a truncation of the electron scattering to a local cluster of atoms,

the size of which is determined by the requested accuracy. By exploiting this algorithm, we show linear scaling

calculations of more than 16 000 NiPd atoms.

DOI: 10.1103/PhysRevB.85.235103 PACS number(s): 71.15.Dx, 71.23.−k, 73.22.−f

I. INTRODUCTION

The microscopic understanding of multicomponent, pat-

terned, or nanostructured solids with internal interfaces, struc-

tural and compositional disorder, point and extended defects

is a central issue in material science, nanoelectronics, surface

science, and chemistry. This understanding is of particular

importance for the description of samples and ultimately of

devices, the properties of which are determined by spatial

extents on the nanoscale. In this case, the local properties

depend on the shape, size, local chemical composition of

small clusters, precipitates, formed filaments, or even sin-

gle defects that interfere or even determine immediately

the device functionality. Conversely, defects also provide a

powerful toolbox to actively design system properties. From

the theoretical point of view, the microscopic properties are

determined by the electronic structure that is treated success-

fully ab initio by the density functional theory (DFT) using

appropriate approximations to the unknown exchange and

correlation functional. The treatment of nonideal structures

such as interfaces, dislocations, or, e.g., amorphous systems or

compositionally disordered systems, is, however, significantly

more difficult since the symmetry is typically distinctively

reduced as compared to the ideal periodic crystals. In addition,

computational schemes have to account for the vastly enhanced

chemical and structural complexity in the samples.

In order to face those challenges, two approaches are most

commonly used for the ab initio description of nonideal

systems: One approach is known as the coherent-potential

approximation1 (CPA) in which the scattering of the electrons

in a random alloy is replaced by the scattering of an effective

potential that has the same scattering properties as the alloy

in average. Extensions have been developed such as the

nonlocal CPA (Ref. 2) to include short-range compositional

corrrelations. The incorporation of longer-ranged spatial cor-

relation effects, finite-size effects, as well as more complex

defects on a sufficiently accurate level is not straightforward.

Aside from that, during the last decades, supercell techniques

have been most commonly and successfully used in treating

nonideal structures.3,4 Here, a priori the geometrical and

chemical freedom is not limited but, on the downside, the

number of atoms in the supercell has to be often increased

up to thousands or tens of thousands of atoms to both obtain

statistically relevant results and minimize spurious interactions

with periodic images. The ab initio description of such large-

scaled systems presents a highly demanding computational

task and is often not addressable on conventional computers.

The ongoing development of supercomputers, which nowa-

days combine the power of hundreds of thousands of proces-

sors, moves the computation of more than thousands of atoms

per supercell into the bounds of possibility. The challenge is

to invent efficient algorithms, i.e., algorithms which minimize

communication between processors, and, which come up for

the low memory resources typical for supercomputers. One

approach which guarantees a high scalability is based on

Kohn’s nearsightedness principle, in other words, neglect-

ing a priori long-range interactions. This principle is the

235103-11098-0121/2012/85(23)/235103(12) ©2012 American Physical Society

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

fundamental assumption for the first-principles linear scaling

methods such as CONQUEST,5 ONESTEP,6 SIESTA,7 OPENMX,8

LSMS,9 or LGSF.10 While those methods can be applied to

a broad class of materials, the prerequisite of the presence

of exclusively short-ranged electronic interactions can limit

the applicability to, e.g., metallic systems where long-range

interactions are crucial.
In this paper, we will present the newly developed first-

principles Green’s-function method KKRnano, which can
be used to treat systems with both short- and long-range
interactions and which is especially designed for the treatment
of many thousands of atoms on massively parallel super-
computers with up to 100 000 processors. We will show, as
proposed in Refs. 11–13, how several important techniques
are combined to achieve an efficient quadratic or even
linear scaling and thus a massively parallel algorithm within
the all-electron full-potential Korringa-Kohn-Rostoker (KKR)
method. Further, we will focus on the optimization of the
computationally most demanding part, the iterative solution
of the Dyson equation, by initial guess and preconditioning
techniques without compromising on the accuracy.

II. KORRINGA-KOHN-ROSTOKER

GREEN’S-FUNCTION METHOD

In a Green’s-function method, the energy-resolved electron

density can be obtained directly from the Green’s function by

n(r,E) = −
1

π
Im G(r,r,E). (1)

The Green’s function G(r,r′,E) is the solution of the

Schrödinger equation with a δ function as source term, which

reads in atomic units as
[

− ∇2
r + V (r) − E

]

G(r,r′; E) = −δ(r − r′). (2)

Equivalently, G can be given by an integral equation, which

is computationally easier to solve than (2) and is from now on

referred to as Dyson equation

G(r,r′; E)

= Gr (r,r′; E) +
∫

dr′′Gr (r,r′′; E)�V (r′′)G(r′′,r′; E),

(3)

where Gr(r,r′; E) is the Green’s function of an arbitrary

reference system and �V (r) = V (r) − V r(r) represents the

difference of the potential between the real and the reference

systems. In the KKR method, the spatial integration in Eq. (3)

is performed over space-filling Voronoi cells, and the scattering

events are described by an angular momentum expansion in

l and m around the site-centered coordinates Rn. From now

on, the index L will be used to abbreviate l and |m| � l with

Lmax = (lmax + 1)2 possible combinations, where lmax denotes

the maximal angular momentum contribution considered.

Within multiple-scattering theory, a clear separation be-

tween single-site and multiple-scattering quantities appears:

G(Rn + r,Rn′ + r′; E)

= δnn′
Gn

s (r,r′; E) +
∑

LL′

Rn
L(r; E)Gnn′

LL′(E)Rn′

L′(r′; E),

(4)

where Gn
s and Rn

L are the single-site Green’s function and
wave functions, which can be obtained locally on each site
n with respect to a given local potential and thereby can be
parallelized trivially in real space over sites. The expression
of both single-site quantities and further details on the full-
potential algorithm are given in Refs. 11 and 14. The remaining
task is to determine the multiple-scattering Green’s-function
matrix elements Gnn′

LL′(E), which obey the algebraic Dyson
equation

Gnn′

LL′(E)

= G
r,nn′

LL′ (E) +
∑

n′′,L′′L′′′

G
r,nn′′

LL′′ (E) �tn
′′

L′′L′′′ (E) Gn′′n′

L′′′L′(E),

(5)

where G
r,nn′

LL′ (E) are the structure constants of the reference
system and �tnLL′ is the difference of the t matrices between
the real and the reference systems:

�tnLL′(E) =
∫

n

dr jl(r
√

E) YL(r)V n(r)Rn
L′(r; E)

−
∫

n

dr jl(r
√

E) YL(r)V r,n(r)R
r,n
L′ (r; E). (6)

Here, R
r,n
L and V r,n are the wave function and the potential

of the reference system. YL denote spherical harmonics and
jl spherical Bessel functions. The integration in Eq. (6) is
restricted for both integrals to the local site, which directly
leads to an efficient parallelization of the computational work
over sites. The computationally most demanding part remains
the solution of the Dyson equation (5), on which this paper
focuses.

It is important to note that the energy integration over the

spectral density (1) can be considerably accelerated by taking

advantage of the analytic properties of the Green’s function in

the complex plane and by using an electronic temperature T

introduced by the Fermi-Dirac distribution fT (E):

n(r) = −
1

π
Im

∫ ∞

EB

dE fT (E) G(r,r,E), (7)

as shown by Wildberger et al..15 Here, EB is chosen to lie
between core states (E < EB), which are obtained locally
in an atomiclike approach with wave functions satisfying
atomic boundary conditions, and valence states (E > EB).
The Fermi function fT (E) = (1 + exp(E−EF

kBT
))−1 has poles at

the Matsubara energies Ej = EF + (2j + 1)iπkBT , whereas
the Green’s function is analytic away from the real axis and
consequently rather smooth in the complex plane. This allows
for a considerable reduction of integration points. Instead of
using many hundreds of energy integration points along the
real axis, by applying the artificial energy broadening to the
complex contour integration, high accuracy can be reached
considering only 20 to 40 energy points. Furthermore, the
calculation of the Green’s function at complex energy points
on the integration contour and at the Matsubara poles is crucial
since the iterative schemes to solve the Dyson equation work
increasingly faster with larger distances from the real axis.11

III. TB-KKR GREEN’S-FUNCTION METHOD

Tight-binding (TB) schemes within ab initio electronic-

structure methods have been very successfully realized in

235103-2

MASSIVELY PARALLEL DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 85, 235103 (2012)

the TB linear muffin-tin orbital method16 and, e.g., for

interfaces and surfaces within the principal layer technique.17

In this paper, we make use of the related tight-binding or

screened KKR methods as developed by Zeller et al..18 Within

this approach, an advantageous two-step procedure can be

introduced instead of solving the Dyson equation (5) directly:

First, the free-space Green’s function g0 is related to the one

of a cluster of hard repulsive spheres, which are placed in the

same geometry as the lattice sites of the actual system:

G
r,nn′

LL′ (E)

= g
0,nn′

LL′ (E) +
∑

n′′,L′′L′′′

g
0,nn′′

LL′′ (E) t
r,n′′

L′′L′′′(E) G
r,n′′n′

L′′′L′ (E). (8)

Instead of the slow spatial decay of the free-space scattering

matrix g0 with respect to the distance between Rn and Rn′
, the

reference cluster scattering matrix Gr decays exponentially

fast with increasing distance within the energy interval of the

valence states.18 This allows for the introduction of a radial

cutoff without loss of accuracy, resulting in a finite number Ncl

of interacting atoms within this cluster. The computation of (8)

can be performed locally for each site and its individual cluster

of atoms, and it is therefore ideally suited to be distributed to

independent processes. The second step is the connection of

this reference system to the actual system via

Gnn′

LL′ (E,k)

= G
r,nn′

LL′ (E,k) +
∑

n′′,L′′L′′′

G
r,nn′′

LL′′ (E,k) �tn
′′

L′′L′′′ (E) Gn′′n′

L′′′L′(E,k),

(9)

where we introduced here the k dependency induced by the

periodic boundary conditions of the supercell. Consequently,

in Eq. (9). the indices n and n′ are now restricted to sites

within the supercell of a total number of sites N . Since the

introduction of empty cells is a frequently used procedure

in KKR schemes, the number of sites of the supercell N is

allowed to be greater than the number of atoms of the supercell

Nat, i.e., N � Nat. Accordingly, we are using N for the number

of sites throughout this paper. Regarding (9), it is important to

note that the matrix Gr is now sparse in the space of sites with

only ∝ NclN nonzero entries. This sparsity enables us to store

this matrix for large systems on supercomputers and reduces

the amount of floating-point operations, which are two crucial

steps towards an efficient large-scale algorithm.

IV. ITERATIVE SOLUTION OF THE DYSON EQUATION

In order to identify and discuss the computational bottle-

neck arising from the solution of the Dyson equation (9), we

reformulate the problem in the following. For this purpose, we

drop the angular momentum and atomic-site indices as well as

energy and k-point dependencies from here on.

Starting from the Dyson equation (9),

G = Gr + Gr�t G, (10)

it is clear that Gr fulfills

(I − Gr�t) G = Gr. (11)

Instead of directly solving (11) for G, we avoid the

matrix-matrix multiplication of Gr and the inverted matrix

(1 − Gr�t)−1 and exploit in the following that both �t and

(�t)−1 are block diagonal. With the identity

Gr = −(I − Gr�t) �t−1 + �t−1, (12)

it follows after multiplication with (1 − Gr�t)−1

G = −(�t)−1 + (�t)−1[(�t)−1 − Gr]−1(�t)−1. (13)

Since the �t matrices are block diagonal, all matrix-matrix

multiplications in Eq. (13) are computationally inexpensive.

The CPU time-consuming part of (13) to compute the inverse

of

M = (�t)−1 − Gr (14)

is often referred to as KKR matrix or scattering path operator,

the direct inversion of which requires O(N3) floating-point

operations. Although optimized sparse solvers can reduce

the computational effort considerably, they require extensive

communication if parallelized. The iterative inversion can

be an efficient, alternative scheme for sparse and parallel

calculations as it takes advantage of the sparsity and can be

parallelized without any demands for communication during

the inversion step. In order to conduct the iterative inversion,

M and its inverse

X = M−1 = [(�t)−1 − Gr]−1 (15)

can be set into relation as

�t M X = �t. (16)

Inserting the actual expression (14) of M leads to

X = �t + �t GrX, (17)

which can be solved using the scheme

X(ν+1) = �t + �t GrX(ν) (18)

in an iterative cycle X(0) → X(1), X(ν) → X(ν+1), where

ν is the iteration index and X is a quadratic matrix of

size N (lmax + 1)2 × N (lmax + 1)2. However, the convergency

properties of such simple schemes are usually rather poor,

which is motivating the choice of more sophisticated methods

as, e.g., the generalized minimal residual19 (GMRES) or the

quasi-minimal residual (QMR) method.20 Both algorithms are

formulated to solve a set of linear equations

A X = B. (19)

In this context, Eq. (18) can be reformulated as

(�t Gr − I)X = −�t, (20)

the solution X of which we obtain in this representation by an

iterative transpose free QMR (TFQMR) solver.21

At this point, the computation time of the algorithm

scales ∝N2NclNit, where Nit stands for the number of

TFQMR iterations required to converge X down to the

predefined accuracy. An important property of the linear matrix

equation (20) is that it decouples in N (lmax + 1)2 problems,

i.e., N (lmax + 1)2 vectors each of the size N (lmax + 1)2 can

be iterated independently and together build the full solvent

matrix X. In the following, X will stand for the solvent of

one of those subproblems and is then accordingly referred to

as vector. Beyond that, it is partly of conceptual advantage to

group the (lmax + 1)2 vectors X representing the same atom

235103-3

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

index into one matrix. For the discussion of scaling behavior,

it is important to note that we find, in agreement with Refs. 11

and 22, that Nit depends only weakly on the system size for

N > 1000 and it is assumed to be constant from now on.

However, depending on the temperature T , for the energy point

closest to the real axis up to Nit ≈ 1000 iterations might be

needed. For efficient computing, it is crucial to come up with

schemes which reduce this factor considerably, such as finding

a good starting vector as initial guess and/or preconditioning

the matrix A = (�t Gr − I) in Eqs. (19) and (20), respectively.

In the following, we will describe the implementation of both

techniques and its performance acceleration focusing on one

of the N (lmax + 1)2 equivalent problems solving (20).

In order to validate and show the increase in computational

efficiency of the new concepts, which will be presented

throughout this paper, KKRnano is applied to three dif-

ferent test systems with different physical properties. First,

Ge1Sb2Te4 is a phase-change material and crystallizes in the

rocksalt lattice structure. The chemical composition is defined

by two fcc sublattices, where one is fully occupied by Te

and the other is disordered and is hosting 25% Ge, 50%

Sb, and 25% vacancies. As a second system, we consider

a semiconductor, pure Si in a diamond structure. In order

to probe our method for purely metallic and spin-polarized

samples, we append this set of sample systems with a

quasirandom alloy of Ni and Pd crystallizing in the fcc

structure. While the NiPd alloy is treated with a lmax = 3,

the Si as well as Ge1Sb2Te4 structures are described by an

angular momentum cutoff of lmax = 2.

A. Initial guess

The default choice of the starting vector X(0) in the TFQMR

package21 is 0 + 0i for all entries of X(0). Obviously, this

starting point is usually far from the required solution, which

motivates us to introduce a (in general, arbitrary) starting

vector X(0):

X = X(0) + X̃, (21)

where X̃ is the difference between the solution X and the

starting vector X(0). Subtracting X(0) on both sides of (18)

suggests the definition of

�t ′ = �t − X(0) + �t GrX(0), (22)

which leads to the effective iterative expression

X̃(ν+1) = �t ′ + �t GrX̃(ν), (23)

with X̃(ν) = X(ν) − X(0). The matrix �t ′ directly determines

the quality of the starting solution X(0). Comparing (22) with

(18) shows that �t ′ expresses the perturbation remaining

from the difference between the initial guess and the required

solution. In fact, the calculation of the norm ‖�t ′‖ directly

corresponds to the check for quality by calculating the residual

norm of the present iteration in the usual TFQMR procedure.

For small ‖�t ′‖, i.e., a reasonably good initial guess, the

solution is expected to be computed in fewer iterations, as

will be shown in the following.

Such a starting vector X(0) can be obtained by different

physically motivated approaches:

(i) The solution of an ersatz geometry as a small locally

defined cluster or a coherent potential or virtual-crystal

approximation with an optionally smaller angular momentum

cutoff.

(ii) The extrapolation of the solution at the previ-

ously calculated energy points (E − 1,E − 2, . . .) of the

same self-consistency step (s), X
(0)
(s) (E) = f [X(s)(E − 1),

X(s)(E − 2), . . .].

(iii) The result of the previous self-consistency step (s − 1),

but same energy point E: X
(0)
(s) (E) = X(s−1)(E).

While the solution of an ersatz geometry can give an

excellent initial guess for a class of materials as, e.g., the

solution in a local cluster for semiconducting samples, the

quality of the initial guess can be significantly worse in

metallic systems. Moreover, the calculation of a precise initial

guess can become computationally expensive and slows down

the algorithm considerably. The extrapolation from previous

energy points is computationally cheap. However, we find that

the accuracy of such an extrapolation is rather limited. It is

more advantageous to use the result of the previous DFT self-

consistency cycle. This gives an initial guess, which exhibits

usually already at the first self-consistency steps s, a quality

of (‖X(s)‖ − ‖X(s−1)‖)/‖X(s)‖ ≈ 10−2. Keeping in mind the

architectures of modern supercomputers, for this approach the

memory limitations can be a bottleneck as for each atomic site

the information on X(s−1) with size N (lmax + 1)2 × (lmax + 1)2

has to be stored for each energy and k point. Therefore,

in KKRnano contributions to represent X(0) that are larger

than a specified cutoff are accordingly stored in a highly

sparse representation. By applying the initial guess, the overall

performed TFQMR iterations (Fig. 1) exhibit for all cases a

significant reduction in the number of iterations by a factor γ

FIG. 1. (Color online) Reduction of the number of required

iterations by application of the third initial guess strategy as described

above for the system Ge1Sb2Te4. The reduction ratio γ is defined

as the ratio of the sum of all iterations needed for all sites, k

and energy points, as well as lm components with and without

application of the initial guess. Here, we considered system sizes

from N = 64 to 512 and display γ as a function of the degree

of convergency of the self-consistency steps, which is represented

by the rms error, the variance of actual (s), and previous (s − 1)

potential ∝‖V(s)(r) − V(s−1)(r)‖, from which X
(0)
(s) = X(s−1) is taken.

The average reduction is plotted as a straight line.

235103-4

MASSIVELY PARALLEL DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 85, 235103 (2012)

of 0.45 to 0.95. As intuitively expected, the increase in quality

of the initial guess for almost converged self-consistency

iterations leads to a reliable incremental reduction of required

TFQMR iterations.

B. Block-circulant preconditioning

In addition to the initial guess, the number of TFQMR

iterations can be considerably reduced by application of

preconditioning schemes. Here, the main challenge is finding

a good approximation P to the matrix A in Eq. (19) that can be

inverted easily. With the help of such an approximate matrix

P = P1 P2, (24)

a modified linear matrix equation

A′ Y = B ′ (25)

is solved, where A′ = P −1
1 AP −1

2 , B ′ = P −1
1 (B − AX(0)), and

Y = P2(X − X(0)). X(0) denotes an optional initial guess to

the solution X of AX = B. The residual vector r ′(ν) for the

preconditioned system of TFQMR iteration ν then reads as

r ′(ν) = B ′ − A′Y (ν). When a sufficiently small residual vector

r ′(ν) is obtained, the solution of the original system can be

calculated as

X(ν) = X(0) + P −1
2 Y (ν). (26)

The residual of the original system translates as

r (ν) = P1r
′(ν). (27)

For our purposes, we limit the preconditioning to right

preconditioning by setting P1 = I , which then leaves the

required size of the minimal residual unchanged to the one

of the original system. If the initial guess X(0) is zero, the

additional computation consists of two steps:

(i) To calculate A′Y = AP −1
2 Y , the preconditioning matrix

P −1
2 is applied to Y before every matrix multiplication with A.

This step must be performed in every TFQMR iteration.

(ii) The solution of the original system X is obtained from

Y by Eq. (26).

The remaining and most challenging task is to find an easily

invertible matrix P2 approximating A. One approach is to

obtain P −1
2 by applying a sparse complete (LU) or incomplete

(ILU) factorization of the matrix A, i.e. a decomposition

as product of lower and upper triangular matrices, which

would be functional also for cells with large relaxations or

amorphous systems. However, since we aim to develop a

highly parallelized code and ILU preconditioners are difficult

to parallelize efficiently, we come up with a different scheme.

A prerequisite for this alternative scheme is to restrict the

approach to systems with structural relaxations of at most

5% of the lattice constant. Under this assumption, we can

exploit the fact that in such lattices, Gr, and partly also �t ,

are roughly periodic on a smaller length scale than the size of

the actual supercell. This idea is the basis for preconditioning

by a block-circulant matrix, which was recently introduced by

Bolten et al..23 We will show that this scheme is optimally

suited to obtain efficiently a high-quality preconditioning

matrix in KKRnano.

In all cubic or rectangular lattices, the supercell can be

partitioned into Mx
bl, M

y

bl, and Mz
bl blocks in the x, y, and

z directions in real space. Those in total Mbl = Mx
blM

y

blM
z
bl

blocks build a new coarse basis for the supercell, where

each block contains Nbl = N/Mbl atoms. [See Fig. 2(a)

for a two-dimensional example of this spatial construction.]

The matrix A = (�tGr − I) can then be composed out of

Mbl × Mbl submatrices and reads in full representation as

Ann′

LL′ =

















(

a
nbln

′
bl

LL′

)

11

(

a
nbln

′
bl

LL′

)

12
. . .

(

a
nbln

′
bl

LL′

)

1Nbl
(

a
nbln

′
bl

LL′

)

21
(a

nbln
′
bl

LL′)22 . . .
(

a
nbln

′
bl

LL′

)

2Nbl

...
...

. . .
...

(

a
nbln

′
bl

LL′

)

Nbl1

(

a
nbln

′
bl

LL′

)

Nbl2
. . .

(

a
nbln

′
bl

LL′

)

NblNbl

















,

where the submatrices (a
nbln

′
bl

LL′)ij are of dimension Nbl(lmax +
1)2 × Nbl(lmax + 1)2 and nbl is accordingly running from

1 to Nbl. In this representation, the diagonal submatrices

(i = j) cover the intrablock interactions, while the interblock

interactions are accounted for by the off-diagonal submatrices

(i
= j).

Although chemical or geometrical disorder on the lattice

leads to a clear distinction between individual subblocks, we

assume that average subblocks are in coarse approximation

suitable to describe the entire lattice. By dropping the internal

indices of the submatrices aij = (a
nbln

′
bl

LL′)ij , all submatrices

are replaced by a set of averaged submatrices ai , where the

averaging process is carried out for each element separately.

The mean submatrix carrying the intrablock interaction then

reads as

a1 =
1

Mbl

Mbl
∑

j

ajj . (28)

However, for a generalization of (28) to interblock interactions,

it is convenient to use not the row index i of submatrices

directly, but instead a local relative index il(j): From here on,

each il(j) marks a subblock of specific relative geometrical

position to the central subblock i = j of column j [for an

illustration of this definition, see Fig. 2(c)]. This relative

geometrical position of the block with respect to the diagonal

block is given by �il (j) = (�x
il (j),�

y

il (j),�
z
il (j)). For example,

in Fig. 2(c), the block neighboring the diagonal block in the

x direction would be addressed by �2 = (1,0,0). By utilizing

this notation, we can generalize (28) to

ail (j) =
1

Mbl

Mbl
∑

j

ail (j)j , (29)

which is for the intrablock interaction il(j) = 1 equivalent

to Eq. (28). This averaging operation (29) is schematically

visualized in Figs. 2(d) and 2(e). With this set of averaged

blocks, we can proceed representing the full matrix Ann′

LL′ by a

block-circulant matrix. It is important to note that in practice

we restrict the number of considered off-diagonal subblocks

as indicated in Fig. 2(a) to M ′
bl < Mbl, which is equivalent to

introducing a number of zero matrices on the block-circulant

matrix A. M ′
bl is often and throughout this paper chosen

such that nearest- and next-nearest-neighbor subblocks are in-

cluded. This cutoff is justified by the fact that through the use of

screened reference potentials, blocks being geometrically far

235103-5

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

FIG. 2. (Color online) In all five panels, a two-dimensional supercell (boundary marked with gray dashed lines) is drawn and the five

different conceptual steps needed for the block-circulant preconditioning scheme are illustrated. (a) Shows the supercell on the level of

atoms, which is here exemplified by a two-dimensional disordered lattice of two arbitrary types of atoms (light and dark blue) with overall

N = 64 atoms. In addition, the supercell is partitioned into Mbl = 16 subblocks, where each subblock contains Nbl = 4. The borders of the

subblock are indicated by blue lines. Then, overall Mx
bl = 4 and M

y

bl = 4 subblocks in the x and y directions are required to represent the full

supercell. (b) Illustrates how those subblocks are labeled over the entire supercell by the index j from j = 1 to j = Mbl = Mx
blM

y

bl. In addition,

it is shown how this index j is related to the position (xj , yj) in real space. In (c), the interblock interactions of subblock j = 6, which is

highlighted by thick blue lines in (b) and (c), are depicted in the space of the row index il(j). For the sake of simplicity, index il(j) is running

exclusively over nearest-neighboring subblocks. Further, the relative geometrical position of the interacting blocks �x
il (j) and �

y

il (j) are specified

for this simplified example. (d) Schematically shows the full interaction matrix of the supercell from all Mbl = 16 blocks amongst each other,

highlighting two selected types of interaction il(j) = 1 (orange colors) and il(j) = 2 (blue colors), where the variations in color represent

variations in the individual interactions. In direct contrast, (e) depicts the consequence of averaging the full interaction matrix to effective

interactions by means of Eq. (29), which are accordingly represented by uniform colors. Note that (d) and (e) are schematical illustrations

being not one-to-one related to (a)–(c).

from the centered diagonal block have small elements and can

be neglected for the construction of the preconditioning matrix.

The averaged block matrices are now used to set up a block-

circulant matrix, which is utilized as preconditioning matrix

P2. For a fast computation of the inverse of P2, an important

property of circulant matrices is exploited: Given a Fourier

transform defined as

αj =
∑

i

ai e−2πi�il (j)kj , (30)

where

kj = (kx,ky,kz) =
(

xj − 1

Mx
bl

,
yj − 1

M
y

bl

,
zj − 1

Mz
bl

)

. (31)

An illustration of the definition of the spatial indices xj , yj ,

and zj can be found in Fig. 2(b) and the blocks αj are of size

Nbl(lmax + 1)2 × Nbl(lmax + 1)2. This Fourier transform (30)

of a circulant or block-circulant matrix P2 creates a block-

diagonal representation of P2, (P2)k, in reciprocal space.23

The submatrices of (P2)k, αj , can now be block-wise inverted

by means of LU decomposition. These are fast operations due

to the small block sizes, e.g., for Nbl = 10 atoms and lmax = 3

the blocks have a size of 160 × 160. The required matrix for

preconditioning P −1
2 is then constructed out of

(P2)−1
k =

















α−1
1 0 . . . 0

0 α−1
2

...

...
. . . 0

0 . . . 0 α−1
Mbl

















. (32)

235103-6

MASSIVELY PARALLEL DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 85, 235103 (2012)

Multiplication of (P2)−1
k as operated in Eq. (26) as well

as in every multiplication involving A′ is then conducted

in reciprocal space. Therefore, first a fast Fourier transform

(FFT) is applied straightforwardly to Y , Y �−→ Yk, then the

matrix multiplication (P2)−1
k Yk is done, and as a last step,

the back transformation (P2)−1
k Yk �−→ P −1

2 Y gives the desired

preconditioned vector P −1
2 Y .

After having introduced the preconditioning scheme, it is

worthwhile commenting on the choice and construction of

subblocks. Depending on the system size and complexity of

the lattice, subblocks can be defined in several ways. To operate

with small preprocessing times, which scale cubically with the

number of atoms in the subblocks, in practice we choose block

sizes not larger than 16 atoms. For cubic cells, Nbl is usually

set to, e.g., Nbl = 4 for fcc or Nbl = 8 for rocksalt structures,

while for structures incorporating additional interstitial sites,

such as zinc blende or diamond, typically Nbl = 16 is selected.

The performance acceleration, or the reduction of the

required number of TFQMR iterations, respectively, is shown

in Fig. 3(a) for a sample system, i.e., a Si432 unit cell, at the

FIG. 3. (Color online) (a) Convergency of the norm of the residual

vector |r| as a function of the number of TFQMR iterations combining

the initial guess approach and block-circulant preconditioning (BCP)

for an arbitrary column of a matrix corresponding to Si432. Four

different qualities of starting vectors rated by the initial residual

|r (0)| = AX(0) − B are shown for comparison with (thick lines) and

without (thin lines) applied preconditioning. Note that a log-log scale

is used. In (b) and (c), the CPU time required to obtain convergency

is shown for all qualities of initial guesses used in (a) in consistent

color coding. Timings with and without applied preconditioning are

shown in (c) and (b), respectively. Note that the scale is different in

(b) and (c). For the sake of comparison, the CPU time required to set

up the BCP is specified in (c). The CPU time to apply the initial guess

is for all scenarios negligibly small and not shown.

FIG. 4. (Color online) Sum of TFQMR and TFQMR+BCP

iterations over all lm components and one arbitrary atom in the

test system Ni5Pd251. Here, all 27 energy integration points are

considered and no initial guess has been used. A random displacement

from the ideal atomic sites on the order of 1% has been introduced

on all sites. The inset shows the distribution of the energy points

along the integration contour. The color-coded points illustrate the

corresponding positions of energy points in the main graph.

energy point closest to the real axis. This point is of particular

importance as the convergence at this energy point is most

demanding. For all scenarios with different qualities for the

initial guesses, convergency to sufficiently small norms |r (ν)| of

the residual vector r (ν) is reached strikingly faster than without

block-circulant preconditioning. By applying block-circulant

preconditioning, at least a factor of 20 less TFQMR iterations

have to be performed. To obtain a more general picture, Fig. 4

shows the required number of TFQMR iterations at different

energy points. Here, the large variability over a range of 100

to 10 000 iterations is clearly visible for the unpreconditioned

approach. Preconditioning leads to a significant reduction by

a factor of 2 to 50 and to a much smaller spread of the

number of iterations between 60 to 200 from the first to the last

energy point.

This reduction of the number of iterations raises the

question as to whether it can be translated into an overall

speedup of the algorithm since additional computational

work has to be performed: On the one hand, the setup

of the calculation with initial guess and the creation of a

preconditioning matrix P −1
2 is performed once prior to the

start of the iterative procedure. On the other hand, P −1
2 is

applied at each iterative step. While the setup of the initial

guess requires only negligibly more computational overhead,

Figs. 3(b) and 3(c) display the timings for both preconditioning

steps. Apparent from Fig. 3(c), about 25% of the total time

of the iterative solution with block-circulant preconditioning

(BCP) is consumed to generate P −1
2 . However, comparing the

timing with and without the BCP in Figs. 3(b) and 3(c) reveals

that the extra amount of computational work is well invested.

The strongly reduced number of iterations [even though each of

them takes longer due to the multiplication with P −1
2 according

to (25)] translates for this particular energy point and system

235103-7

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

into a significant speedup of the algorithm by a factor 6 to 9

as shown in Figs. 3(b) and 3(c).

Overall, and for many different metallic and semicon-

ducting systems including small relaxations on the order of

5% of the lattice constant, we observe in total a speedup

by block-circulant preconditioning by a factor of 3 to 10,

depending predominantly on the temperature and distribution

of energy points.

It is important to note that the presented introduction of

the iterative solution of the Dyson equation does not limit

the accuracy of the calculations: For example, with respect

to the total energy, an error per atom on the order of one

µeV is reached usually already by stopping the iterative steps

for residuals on the order of 10−7|b|. Therefore, we find that

calculations with KKRnano fully maintain the high accuracy

as established with existing full-potential KKR methods.14

V. PARALLELIZATION AND SCALING

During the past decade, a rapid trend to parallelism

evolved in high-performance computing. This development

is still ongoing and manifests in the fact that nowadays

the fastest supercomputers contain hundreds of thousands of

processing units (cores). In order to guarantee the portability

of KKRnano to existing and future platforms of that kind,

we have developed and optimized our code on two modern

computing architectures available at the Forschungszentrum

Jülich, which are both among the 40 fastest computers in

the world (Ref. 24). Those supercomputers are an IBM Blue

Gene/P [JUGENE (Ref. 25)] with 294 912 cores, four cores per

node, 2048 MB memory per node, and the JUROPA system26

with 17 664 cores, eight cores per node, 24 GB memory per

node. Based on these facts and the demand for portability

to other platforms, we define three essential goals for the

parallelization of KKRnano:

(i) parallelization up to at least 10 000 processors;

(ii) memory demand below the limit of 512 MB per

message processing interface (MPI) process;

(iii) OpenMP parallelization.

While massive parallelization and low memory demands

are obvious prerequisites to perform calculations on JUGENE,

an additional level of OpenMP parallelization gives us the

flexibility to operate in a shared memory approach and use

considerable more memory, e.g., on JUGENE 2048 MB of

memory or on JUROPA up to 24 GB of memory. To achieve

these goals in KKRnano, four levels of parallelization are

realized, which are schematically shown in Fig. 5. While the

base frame of our method is the parallelization over atoms,

which is always active, the other levels of parallelization

can be used optionally. In the following, we will briefly

describe the important steps of all levels of parallelization

and independently illustrate their efficiency.

A. Atom parallelization

The entire program has been parallelized in real space

over Voronoi cells. Those cells are constructed around the

atomic sites and, if present in the lattice, around vacancies

and/or interstitials. Although not all cells in general must

FIG. 5. (Color online) Schematic workflow and nested paral-

lelization of four levels of hierarchy as implemented in KKRnano.

Starting with a serial process (gray), the computational work is dis-

tributed to the real-space parallelization (black). Here, three branches

correspond to three atoms. These processes are further split, e.g., into

two processes distributing operations over energy integration points

(blue). Subsequently, those processes can be further split in spin-up

and spin-down processes (red) in case of spin polarization. While up

to this point all parallelization has been implemented in a distributed

memory approach using MPI 2.0, the inner nested parallelization

(orange) of the solution of the Dyson equation is based on OpenMP

parallelization, which is in this example split into two threads.

contain atoms, we will for the sake of simplicity refer to this

parallelization scheme as atom parallelization.

KKRnano is constructed such that the loop over atoms

takes the highest hierarchy, which is the natural choice for the

implemented iterative scheme. In order to be able to distribute

the memory to the MPI processes, the number of processors

Np has to be equal or larger than the number of lattice sites

in the supercell N . The computationally most demanding

part, the iterative solution of the Dyson equation, can be

split straightforwardly in terms of the atom parallelization

as explained above. In nonideal structures, which explicitly

include relaxations, each atomic site might have a different

surrounding. For the screened KKR method, this requires

the computation of the reference structure constants for all

clusters. This work can be efficiently distributed using atom

parallelization. The number of reference clusters is always

smaller or equal to the number of sites and the computation

of Gr can therefore be straightforwardly distributed to the

atom parallelization and subsequently broadcasted by MPI

communication.

235103-8

MASSIVELY PARALLEL DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 85, 235103 (2012)

FIG. 6. (Color online) Scaling of KKRnano on a Blue Gene/P

(Ref. 25) for a NixPd1−x system as a function of number of atoms per

unit cell N from N =108 to 6912 with a Ni concentration of x ≈ 3%

using one k point and always one processor per atom. Block-circulant

preconditioning has been applied with blocks of four atoms, and no

initial guess has been used. Displayed are the execution time tf (blue),

the total CPU time tf N = tf Np (orange), as well as total CPU time

without the time required for MPI communication (gray crosses).

Straight lines are linear cN (blue) and quadratic cN2 (orange) fits

to the data points, where c is a constant, which is slightly different

for both fits. All time measurements have been executed using the

performance analysis tool SCALASCA (Ref. 27).

The weak scaling, i.e., increasing the system size and

the number of processors used by the same factor, of the

atom parallelization is shown in Fig. 6. Focusing on the

pure atom parallelization, an O(N2) scaling in CPU time

can be observed. Alternative approaches to solve the Dyson

equation are not preferable, as those direct methods run into

the memory boundaries on supercomputers quickly and are

not efficiently parallelizable. The quadratic and linear fits

to the time measurement reveal that an O(N2) scaling in

CPU time and an O(N) scaling in execution time describe

well the scaling performance of KKRnano (see Fig. 6). This

efficient parallel performance has been rendered possible by

designing the method such that MPI communication presents

no bottleneck. In order to highlight this fact, we show in

addition in Fig. 6 the required CPU time after subtracting

all MPI communication related efforts: Independent on N ,

less than 10% of computational time is used up for MPI

communication and synchronization of MPI processes.

B. Spin parallelization

In magnetic systems with collinear magnetic spin structures

such as ferromagnets, antiferromagnets, ferrimagnets, or solids

with spin-density waves, the parallelization over spin-up

and -down electrons provides a natural second level of

parallelization. The work performed for the two types of

electrons is divided into two MPI processes, which include

setups of the �t matrices, solution of the Dyson equation,

and computation of the electron density. The speedup shown

in Fig. 7 (compare curve {211} with {111}) exhibits the high

efficiency of this level of parallelization. For all examined

system sizes, we find an acceleration by a factor of 1.7 to 1.8 in

FIG. 7. (Color online) Speedup of KKRnano as a function of

number of atoms N in the supercell. The number of processors is

always equal to the number of atoms N defining the speedup of 1.

All optional levels of parallelization are probed separately on a Blue

Gene/P (Ref. 25) architecture for NixPd1−x alloys. The details are

the same as described in the caption of Fig. 6. Labels {pS, pE, tOMP}
with pS, pE, and tOMP specify the number of processes/threads used

per spin, energy, and OpenMP parallelization, respectively. For the

energy parallelization, dynamic load balancing as explained in the

text has been adopted.

execution time compared to spin nonparallelized calculations.

Here, as for all other optional levels of parallelization, the

increased speedup for larger systems can be related to the

fact that the ratio of parallelized parts to the nonparallelized

overhead grows with N . Further, it should be pointed out

that the spin parallelization as implemented in KKRnano at

present can be applied straightforwardly only to collinear spin

systems without spin-orbit coupling, which would couple the

spin channels.

C. Energy parallelization

As a third level of parallelization, KKRnano has the option

to distribute the energy integration points across processors.

As introduced before, the energy integration is performed on

a complex contour, thereby reducing the number of energy

points to typically 30 to 40. Because the Dyson equation

is solved iteratively, the number of iterations depends on

the position of the energy point in the complex plane.

Figure 4 shows a typical example for the workload at different

energy points. Depending on the electronic temperature and the

material, the computational time required to solve the Dyson

equation for the last energy point closest to the real axis is in

the range between 20% and 40% of the total time.

Balancing the workload, i.e., optimally distributing the

energy points over the processors such that ideally all processes

finish their individual task at the same time, is a highly

nontrivial task that depends on the quality of preconditioning

and the initial guess for the iterative solution. Therefore, we

introduced a scheme which dynamically load balances the

computation for the sth self-consistency step based on the

performance of the (s − 1)th step. The timing for each energy

point is examined on the fly and used to reschedule the MPI

processes under the condition to achieve the optimal load

235103-9

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

balance. With this approach, an estimate of work distribution,

i.e., to each processor a group of energy points is allocated,

has to be made only for the first self-consistency iteration.

For all subsequent iterations, the dynamical load balancing

reaches an efficiency between 90% and 100%. By exploiting

the energy parallelization, we gain a speedup of 1.7 to 1.8 if

two energy groups are used and 2.3 to 2.6 for three energy

groups (compare curves {131}, {121}, and {111} in Fig. 7).

D. OpenMP parallelization

Up to this point, KKRnano has been exclusively parallelized

by means of MPI parallelization. However, state-of-the-art

supercomputers are nowadays predominantly built in hybrid

architecture combining 2–32 CPUs in a shared memory

environment on one node and up to tens of thousands of

those nodes communicating as distributed memory units

amongst each other. This shared memory approach provides

an opportunity to circumvent the notorious memory resources

on current supercomputers. To be able to exploit this important

advantage, we introduce an OpenMP level of parallelization

on top of the existing MPI parallelization, which is described

in the following.

At this point, we have at least two options as to how

to introduce an OpenMP parallelization for the dominant

computational work required to solve the Dyson equation.

The iterative approach solving (20) decouples all columns

of the matrix X, which offers the possibility to introduce

a parallel scheme over the (lmax + 1)2 angular momentum

expansion coefficients. The strict separation of lm components

leads to the use of sparse matrix-vector operations, while in

general the operation AX can be performed as sparse matrix-

matrix multiplication, where X has then N (lmax + 1)2 ×
(lmax + 1)2 elements. Our performance tests showed that

beneficial cache access during the matrix-matrix operations

leads to an acceleration of the algorithm by approximately a

factor of 2. In order to incorporate this speedup in KKRnano,

we implemented a flexible low-level OpenMP parallelization

in various parts of the program, including the matrix-matrix

operations in the iterative steps. The following performance

analysis will be restricted to the inclusion of at most four

OpenMP threads, which is the limit in exploiting the Blue

Gene/P (Ref. 25) architecture. By distribution to two and four

OpenMP threads, we observe an acceleration of 1.4 to 1.7

and 1.7 to 2.4, respectively (compare curves {114}, {112}, and

{111} of Fig. 7). For the practical application, it is important to

note that aside from this speedup, the OpenMP parallelization

extends the memory bounds of KKRnano so that system sizes

of more than 10 000 atoms per supercell are treatable.

The comparison of the three optional levels of paralleliza-

tion on top of the natural one with respect to number of atoms

leads to the conclusion that the spin or energy parallelization

are the option of choice if the application is not memory bound.

If the limited amount of memory restricts the use of these

MPI levels of parallelization, the OpenMP parallelization can

surmount this bottleneck and still leads to a speedup that is

only 20–30% away from the ideal one.

The speedup of all four levels of parallelization and their

combination is shown in Fig. 8. For 4096 atoms and up

to eight processors per atom, we observe a speedup being

FIG. 8. (Color online) Speedup of KKRnano (blue) with respect

to the number of processors combining subsequently all levels of

parallelization on a Blue Gene/P (Ref. 25) architecture for a NixPd1−x

alloy of 4096 atoms versus ideal speedup (gray line). The computa-

tional details are the same as described in the caption of Fig. 6.

Labels {pS, pE, tOMP} with pS, pE, and tOMP specify the number of

processes/threads used per spin, energy, and OpenMP parallelization.

For the energy parallelization, dynamic load balancing as explained

in the text has been adopted.

larger than 60% of the ideal speedup. At a higher level of

parallelization of up to 16 processes per atom, KKRnano still

shows significant acceleration up to a speedup of eight, but

the inefficiencies due to overhead and MPI communication

are clearly visible. Hence, for the test supercell of 4096 atoms

operating between 4096 and 32768 processors guarantees high

efficiency. For larger cells of 10 000 atoms, the percentage of

overhead is reduced and an even higher level of parallelization

becomes efficiently usable. Therefore, KKRnano is ideally

suited to run with up to 100 000 processors on present and

future supercomputing architectures.28

VI. TRUNCATION OF INTERACTION

So far, we solved the Dyson equation and the electron

density, respectively, without compromising on the accuracy.

In the following, we explore the possibility of introducing in

addition the nearsightedness of the density matrix as proposed

by Kohn.29 While the diagonal part of the density matrix

ρ(r,r′) is equivalent to the electron density, the full expression

for ρ reads as

ρ(r,r′) = −
1

π
Im

∫ ∞

−∞
fT (E) G(r,r′,E) dE. (33)

235103-10

MASSIVELY PARALLEL DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 85, 235103 (2012)

Here, analogously as in Eq. (7), the Fermi function fT (E)

enters. Apparently, the Green’s function gives the density

matrix, which facilitates an application of the nearsighted

principle within the KKR Green’s-function approach. This

route has been first exploited by Wang et al..9 Depending on

material properties, e.g., the localization of electronic states,

the multiple-scattering interaction can be restricted indeed to

a local interaction zone described by a local cluster with a

few hundred up to a few thousand atoms Ntr. Accordingly,

interactions to sites being not part of the local cluster are

truncated and neglected. The loss of accuracy, which is induced

by this truncation of the interaction, can however be well

controlled by the parameter Ntr.
11

When using this approximation, only Ntr(lmax + 1)2 rather

than N (lmax + 1)2 nonzero entries of each column of the

solvent of the linear matrix equation X have to be considered.

As a direct consequence, the full matrix A = �tGr − I does

not have to be taken into account to solve for X: The

fraction of the matrix A, which has to be considered, becomes

independent of system size N and proportional to NclNtr.

In other words, the Dyson equation must be solved only in

the individual local interaction zone for each of the atoms

in the unit cell. With the reduced sizes of A and X, the

required matrix-vector operations scale with Ntr instead of

N . As those operations need about 90% of the computational

work of one TFQMR cycle, the truncation leads in the optimal

case to a reduction of computational time by Ntr/N . With

this truncation, the algorithm used in KKRnano ideally scales

∝NitNclNtrN , i.e., linearly with number of atoms N . Hence, if

losses due to MPI communication and overhead are neglected

for the moment, the atom parallelization in KKRnano with its

distribution of work to Np processors (Np � N and Np ∝ N)

leads to an execution time independent of N . Figure 9 reveals

this conjecture in praxis. Except for minor losses due to load

imbalance, MPI communication and overhead, the execution

time indeed remains almost constant for N > Ntr. In other

words, KKRnano shows efficient O(N) scaling for N > Ntr.

FIG. 9. (Color online) Scaling of KKRnano in double-

logarithmic representation without (open blue circles) and with

applied truncation (filled blue circles). The test system is Ni1−xPdx

with x = 5% and one k point on JUGENE. Here, parallelization over

atoms, spin, and two groups of energy points are used. The number

of processing nodes (4 CPUs per node) is shown in dark gray.

With this advantageous scaling at hand, the question

remains as to how the accuracy of the calculation is affected

by truncation. For the metallic test system NiPd, the scaling

of which is shown in Fig. 9, the applied cutoff of Ntr = 959

atoms in the interaction zone leads to an energy error of less

than 2 meV per atom. The loss of accuracy introduced by

truncation depends in general strongly on the treated material

and has be tested to gain ultimate control over the error. In any

case, the accuracy can be increased if the electronic potential

calculated self-consistently with a given interaction zone is

refined in one additional self-consistency step with a larger

zone.

An important advantage of our approach compared to other

methods9 is that linear scaling can be exploited optionally. This

means, for systems where accuracy would demand interaction

zones with tens of thousands of atoms, we can make use of the

explicit periodicity of the supercell using one k point. Aside

from the beneficial linear scaling, the high degree of sparsity

arising from the truncation opens the possibility to extend the

range of system sizes to more than 16 000 atoms.

VII. CONCLUSION

We have presented the successful development of a

powerful massively parallel density functional full-potential

Korringa-Kohn-Rostoker Green’s-function method, KKR-

nano, which is especially designed for large-scale applications

of more than 10 000 atoms on hundreds of thousands of

processors. As typical for all-electron methods without shape

approximation, KKRnano is designed to give the density

functional answer to the problem at hand and accuracy is

not compromised by the algorithms introduced for large-scale

applications on massively parallel computers. The advanta-

geously quadratic or optionally linear scaling with system size

and the high parallel scalability have been achieved by making

use of screened reference systems combined with the iterative

solution of the Dyson equation and optionally the truncation

of long-range interactions. The excellent scaling behavior was

demonstrated for alloys with more than 16 000 atoms and

the test calculations involved more than 65 000 processors.

In addition, we presented schemes to obtain high-quality

initial guesses and preconditioning matrices for the iterative

solution of the Dyson equation, which enable us to speed

up KKRnano by up to one order of magnitude. The high

parallel efficiency of KKRnano is thereby the key to exploit

the full strength of today’s and future massively parallel

supercomputing architectures.

ACKNOWLEDGMENTS

We like to thank W. Lambrecht and P. Mavropoulos for

fruitful discussions. Financial support of the DAAD and both

computational resources as well as technical support of the

Jülich Supercomputing Center are gratefully acknowledged.

This work benefited from discussions within the SFB 917

Nanoswitches.

235103-11

THIESS, ZELLER, BOLTEN, DEDERICHS, AND BLÜGEL PHYSICAL REVIEW B 85, 235103 (2012)

*a.thiess@fz-juelich.de
1H. Shiba, Prog. Theor. Phys. 46, 77 (1971).
2D. A. Rowlands, Rep. Prog. Phys. 72, 086501 (2009).
3R. M. Nieminen, Top. Appl. Phys. 104, 29 (2007).
4A. E. Mattsson, P. A. Schultz, M. P. Desjarlais, T. R. Mattsson, and

K. Leung, Modell. Simul. Mater. Sci. Eng. 13, 1(R) (2005).
5M. J. Gillan, D. R. Bowler, A. S. Torralba, and T. Miyazaki, Comput.

Phys. Commun. 177, 14 (2007).
6C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, and M. C. Payne,

J. Chem. Phys. 122, 084119 (2005).
7J. M. Soler, E. Artacho, J. D. Gale, A. Garcı́a, J. Junquera,

P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14,

2745 (2002).
8T. Ozaki, Phys. Rev. B 82, 075131 (2010).
9Y. Wang, G. M. Stocks, W. A. Shelton, D. M. C. Nicholson,

Z. Szotek, and W. M. Temmerman, Phys. Rev. Lett. 75, 2867

(1995).
10I. A. Abrikosov, A. M. N. Niklasson, S. I. Simak, B. Johansson,

A. V. Ruban, and H. L. Skriver, Phys. Rev. Lett. 76, 4203 (1996).
11R. Zeller, J. Phys.: Condens. Matter 20, 294215 (2008).
12T. Ozaki, Phys. Rev. B 74, 245101 (2006).
13A. V. Smirnov and D. D. Johnson, Phys. Rev. B 64, 235129

(2001).
14N. Papanikolaou, R. Zeller, and P. H. Dederichs, J. Phys.: Condens.

Matter 14, 2799 (2002).

15K. Wildberger, P. Lang, R. Zeller, and P. H. Dederichs, Phys. Rev.

B 52, 11502 (1995).
16O. K. Andersen and O. Jepsen, Phys. Rev. Lett. 53, 2571 (1984).
17B. Wenzien, J. Kudrnovsky, V. Drchal, and M. Sob, J. Phys.:

Condens. Matter 1, 9893 (1989).
18R. Zeller, P. H. Dederichs, B. Újfalussy, L. Szunyogh, and P.

Weinberger, Phys. Rev. B 52, 8807 (1995).
19Y. Saad and M. Schultz, SIAM J. Sci. Stat. Comput. 7, 856 (1986).
20R. W. Freund and N. M. Nachtigal, Numer. Math. 60, 315 (1991).
21R. W. Freund, SIAM J. Sci. Comput. 14, 470 (1993).
22A. V. Smirnov and D. D. Johnson, Comput. Phys. Commun. 148,

74 (2002).
23M. Bolten, A. Thiess, I. Yavneh, and R. Zeller, Linear Algebra

Appl. 436, 436 (2012).
24http://www.top500.org.
25http://www.fz-juelich.de/jsc/jugene.
26http://www.fz-juelich.de/jsc/juropa.
27M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker, and

B. Mohr, Concurrency Comput: Pract. Experience 22, 702 (2010).
28KKRnano has been successfully tested on the full Blue Gene/P

JUGENE (Ref. 25) consisting of 294 912 cores (Ref. 30).
29W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).
30R. Zeller and A. Thiess, Jülich Supercomputing Centre,

Forschungszentrum Jülich, Germany, Report No. FZJ-JSC-IB-

2010-03 (unpublished).

235103-12

