000021270 001__ 21270
000021270 005__ 20200402210239.0
000021270 0247_ $$2pmid$$apmid:21975552
000021270 0247_ $$2pmc$$apmc:PMC3218610
000021270 0247_ $$2DOI$$a10.4161/cam.5.5.17400
000021270 0247_ $$2WOS$$aWOS:000300713700008
000021270 037__ $$aPreJuSER-21270
000021270 041__ $$aeng
000021270 082__ $$a570
000021270 1001_ $$0P:(DE-Juel1)VDB8500$$aSchäfer, C.$$b0$$uFZJ
000021270 245__ $$aThe Filopodium: A stable structure with highly regulated repetitive cycles of elongation and persistence
000021270 260__ $$aAustin, Tex.$$bLandes Bioscience$$c2011
000021270 300__ $$a431 - 438
000021270 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021270 3367_ $$2DataCite$$aOutput Types/Journal article
000021270 3367_ $$00$$2EndNote$$aJournal Article
000021270 3367_ $$2BibTeX$$aARTICLE
000021270 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021270 3367_ $$2DRIVER$$aarticle
000021270 440_0 $$023405$$aCell Adhesion and Migration$$v5$$x1933-6918$$y5
000021270 500__ $$aRecord converted from VDB: 12.11.2012
000021270 520__ $$aThe ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we demonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared to filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this re-growth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.
000021270 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000021270 588__ $$aDataset connected to Web of Science, Pubmed
000021270 65320 $$2Author$$afilopodia
000021270 65320 $$2Author$$alamellipodia
000021270 65320 $$2Author$$acell migration
000021270 65320 $$2Author$$afascin
000021270 65320 $$2Author$$aadhesion
000021270 65320 $$2Author$$aretrograde flow
000021270 65320 $$2Author$$aactin polymerization
000021270 650_2 $$2MeSH$$aActins: chemistry
000021270 650_2 $$2MeSH$$aActins: metabolism
000021270 650_2 $$2MeSH$$aCarrier Proteins: metabolism
000021270 650_2 $$2MeSH$$aCell Adhesion: physiology
000021270 650_2 $$2MeSH$$aCell Adhesion Molecules: chemistry
000021270 650_2 $$2MeSH$$aCell Adhesion Molecules: metabolism
000021270 650_2 $$2MeSH$$aCell Line
000021270 650_2 $$2MeSH$$aCell Movement
000021270 650_2 $$2MeSH$$aFocal Adhesions: metabolism
000021270 650_2 $$2MeSH$$aHumans
000021270 650_2 $$2MeSH$$aKeratinocytes: cytology
000021270 650_2 $$2MeSH$$aKeratinocytes: metabolism
000021270 650_2 $$2MeSH$$aMicrofilament Proteins: chemistry
000021270 650_2 $$2MeSH$$aMicrofilament Proteins: metabolism
000021270 650_2 $$2MeSH$$aPolymerization
000021270 650_2 $$2MeSH$$aPseudopodia: chemistry
000021270 650_2 $$2MeSH$$aPseudopodia: metabolism
000021270 650_7 $$00$$2NLM Chemicals$$aActins
000021270 650_7 $$00$$2NLM Chemicals$$aCarrier Proteins
000021270 650_7 $$00$$2NLM Chemicals$$aCell Adhesion Molecules
000021270 650_7 $$00$$2NLM Chemicals$$aMicrofilament Proteins
000021270 650_7 $$0146808-54-0$$2NLM Chemicals$$afascin
000021270 650_7 $$2WoSType$$aJ
000021270 7001_ $$0P:(DE-Juel1)VDB103618$$aFaust, U.$$b1$$uFZJ
000021270 7001_ $$0P:(DE-Juel1)VDB8902$$aKirchgeßner, N.$$b2$$uFZJ
000021270 7001_ $$0P:(DE-Juel1)128833$$aMerkel, R.$$b3$$uFZJ
000021270 7001_ $$0P:(DE-Juel1)VDB27696$$aHoffmann, B.$$b4$$uFZJ
000021270 773__ $$0PERI:(DE-600)2268518-2$$a10.4161/cam.5.5.17400$$gVol. 5, p. 431 - 438$$p431 - 438$$q5<431 - 438$$tCell adhesion & migration$$v5$$x1933-6918$$y2011
000021270 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218610
000021270 909CO $$ooai:juser.fz-juelich.de:21270$$pVDB
000021270 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000021270 915__ $$0StatID:(DE-HGF)0020$$aNo peer review
000021270 9141_ $$y2011
000021270 9131_ $$0G:(DE-Juel1)FUEK505$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000021270 9132_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000021270 9201_ $$0I:(DE-Juel1)ICS-7-20110106$$gICS$$kICS-7$$lBiomechanik$$x0
000021270 970__ $$aVDB:(DE-Juel1)137212
000021270 980__ $$aVDB
000021270 980__ $$aConvertedRecord
000021270 980__ $$ajournal
000021270 980__ $$aI:(DE-Juel1)ICS-7-20110106
000021270 980__ $$aUNRESTRICTED
000021270 981__ $$aI:(DE-Juel1)IBI-2-20200312