001     21270
005     20200402210239.0
024 7 _ |2 pmid
|a pmid:21975552
024 7 _ |2 pmc
|a pmc:PMC3218610
024 7 _ |2 DOI
|a 10.4161/cam.5.5.17400
024 7 _ |2 WOS
|a WOS:000300713700008
037 _ _ |a PreJuSER-21270
041 _ _ |a eng
082 _ _ |a 570
100 1 _ |a Schäfer, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB8500
245 _ _ |a The Filopodium: A stable structure with highly regulated repetitive cycles of elongation and persistence
260 _ _ |a Austin, Tex.
|b Landes Bioscience
|c 2011
300 _ _ |a 431 - 438
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Cell Adhesion and Migration
|x 1933-6918
|0 23405
|y 5
|v 5
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The ability of mammalian cells to adhere and to migrate is an essential prerequisite to form higher organisms. Early migratory events include substrate sensing, adhesion formation, actin bundle assembly and force generation. Latest research revealed that filopodia are important not only for sensing the substrate but for all of the aforementioned highly regulated processes. However, the exact regulatory mechanisms are still barely understood. Here, we demonstrate that filopodia of human keratinocytes exhibit distinct cycles of repetitive elongation and persistence. A single filopodium thereby is able to initiate the formation of several stable adhesions. Every single filopodial cycle is characterized by an elongation phase, followed by a stabilization time and in many cases a persistence phase. The whole process is strongly connected to the velocity of the lamellipodial leading edge, characterized by a similar phase behavior with a slight time shift compared to filopodia and a different velocity. Most importantly, re-growth of existing filopodia is induced at a sharply defined distance between the filopodial tip and the lamellipodial leading edge. On the molecular level this re-growth is preceded by a strong filopodial reduction of the actin bundling protein fascin. This reduction is achieved by a switch to actin polymerization without fascin incorporation at the filopodial tip and therefore subsequent out-transport of the cross-linker by actin retrograde flow.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Actins: chemistry
650 _ 2 |2 MeSH
|a Actins: metabolism
650 _ 2 |2 MeSH
|a Carrier Proteins: metabolism
650 _ 2 |2 MeSH
|a Cell Adhesion: physiology
650 _ 2 |2 MeSH
|a Cell Adhesion Molecules: chemistry
650 _ 2 |2 MeSH
|a Cell Adhesion Molecules: metabolism
650 _ 2 |2 MeSH
|a Cell Line
650 _ 2 |2 MeSH
|a Cell Movement
650 _ 2 |2 MeSH
|a Focal Adhesions: metabolism
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Keratinocytes: cytology
650 _ 2 |2 MeSH
|a Keratinocytes: metabolism
650 _ 2 |2 MeSH
|a Microfilament Proteins: chemistry
650 _ 2 |2 MeSH
|a Microfilament Proteins: metabolism
650 _ 2 |2 MeSH
|a Polymerization
650 _ 2 |2 MeSH
|a Pseudopodia: chemistry
650 _ 2 |2 MeSH
|a Pseudopodia: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Actins
650 _ 7 |0 0
|2 NLM Chemicals
|a Carrier Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Cell Adhesion Molecules
650 _ 7 |0 0
|2 NLM Chemicals
|a Microfilament Proteins
650 _ 7 |0 146808-54-0
|2 NLM Chemicals
|a fascin
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a filopodia
653 2 0 |2 Author
|a lamellipodia
653 2 0 |2 Author
|a cell migration
653 2 0 |2 Author
|a fascin
653 2 0 |2 Author
|a adhesion
653 2 0 |2 Author
|a retrograde flow
653 2 0 |2 Author
|a actin polymerization
700 1 _ |a Faust, U.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB103618
700 1 _ |a Kirchgeßner, N.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB8902
700 1 _ |a Merkel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Hoffmann, B.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB27696
773 _ _ |a 10.4161/cam.5.5.17400
|g Vol. 5, p. 431 - 438
|p 431 - 438
|q 5<431 - 438
|0 PERI:(DE-600)2268518-2
|t Cell adhesion & migration
|v 5
|y 2011
|x 1933-6918
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3218610
909 C O |o oai:juser.fz-juelich.de:21270
|p VDB
913 1 _ |k P45
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|l Biologische Informationsverarbeitung
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK505
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0020
|a No peer review
920 1 _ |k ICS-7
|l Biomechanik
|g ICS
|0 I:(DE-Juel1)ICS-7-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)137212
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21