001     21273
005     20200402210239.0
024 7 _ |a 10.1039/c2sm07458c
|2 DOI
024 7 _ |a WOS:000304100900020
|2 WOS
024 7 _ |a 2128/7475
|2 Handle
037 _ _ |a PreJuSER-21273
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Multidisciplinary
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |a Monzel, C.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB75022
245 _ _ |a Mapping fluctuations in biomembranes adhered to mictopatterns
260 _ _ |a Cambridge
|b Royal Society of Chemistry (RSC)
|c 2012
300 _ _ |a 6128 - 6138
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Soft Matter
|x 1744-683X
|0 16881
|y 22
|v 8
500 _ _ |a We benefited highly from discussions with Ana-Suncana Smith, Udo Seifert and Daniel Schmidt. We thank Dr Norbert Kirchgessner and Sebastian Houben for helpful discussions on Matlab and Nico Hampe for the fabrication of microstructured SiO2 wafers. One of the authors (C. M.) is grateful for the financial support from the Bonn-Cologne Graduate School and the Universite franco-allemande.
520 _ _ |a We studied biomembrane fluctuations by calculating the instantaneous shape of model membranes adhered to micro-patterned substrates, using micro-interferometry. The model consisted of partially adherent giant unilamellar vesicles (GUVs) which were osmotically deflated. Adhesion was effected via the specific ligand-receptor interaction of biotin-neutravidin. Special micro-structured adhesive substrates were developed where the receptors were distributed in the form of grids or lines. Dual-wavelength reflection interference contrast microscopy (DW-RICM) measurements revealed that on the structured adhesive substrates GUVs exhibit regions of bound and fluctuating membrane, in accordance with the underlying pattern. In the fluctuating zone, the membrane presented itself as a flat-topped hill for an initial osmotic difference of 70 mOsm l(-1). The membrane-substrate distance saturated at a plateau of 79 +/- 9 nm. In this plateau, the fluctuation amplitude was found to be 10 +/- 3 nm. Variation of the shape (grid versus lines) or size (grids of 3.5 or 7 mu m lattice constant) influenced neither the height nor the fluctuation amplitude in the plateau. Fourier analysis revealed that the mode corresponding to a wavelength of twice the pattern size always contributed, and, depending on the substrate, additional modes were sometimes present. The plateau height could be tuned from 0 to 538 nm by changing the initial osmotic gradient between the inside and outside of the GUV, which effectively tuned the membrane tension. The corresponding fluctuation amplitude ranged from non-detectable to a maximum of 17 nm. Our results can be interpreted in the light of a tension dependent effective interaction potential.
536 _ _ |a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK505
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Fenz, SF.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB106793
700 1 _ |a Giesen, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)4744
700 1 _ |a Merkel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Sengupta, K.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB57655
773 _ _ |a 10.1039/c2sm07458c
|g Vol. 8, p. 6128 - 6138
|p 6128 - 6138
|q 8<6128 - 6138
|0 PERI:(DE-600)2191476-X
|t Soft matter
|v 8
|y 2012
|x 1744-683X
856 7 _ |u http://dx.doi.org/10.1039/c2sm07458c
856 4 _ |u https://juser.fz-juelich.de/record/21273/files/FZJ-21273.pdf
|y Published under German "Allianz" Licensing conditions on 2012-05-01. Available in OpenAccess from 2013-05-01
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/21273/files/FZJ-21273.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/21273/files/FZJ-21273.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/21273/files/FZJ-21273.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:21273
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|1 G:(DE-HGF)POF2-450
|0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)POF2-400
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a Allianz-OA
|0 StatID:(DE-HGF)0520
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |k ICS-7
|l Biomechanik
|g ICS
|0 I:(DE-Juel1)ICS-7-20110106
|x 0
970 _ _ |a VDB:(DE-Juel1)137215
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IBI-2-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21