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Drift velocity and driving force are not directly proportional in the case of inhomogeneous sus-
pensions, where a space dependent mobility induces an additional contribution to the drift velocity.
Similarly, particle flux and drift velocity are related not only by the gradient of density but also by
an additional contribution given by the gradient of the self-diffusion coefficient. We provide quanti-
tative support to this scenario in a non-equilibrium system by means of computer simulations with
a temperature gradient. Moreover, our simulation results demonstrate that the temperature gradient-
induced mass transport coefficient, namely thermal diffusion coefficient, is not directly proportional
to the drift velocity so that the well-accepted relation of proportionality is just an approximation.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4723685]

I. INTRODUCTION

The conceptual understanding of forces and drift veloc-
ities at a particle level is highly relevant when dealing with
microscopic length scales. A force f acting on a particle sus-
pended in a homogeneous solvent will induce a drift velocity
vd , that precisely balances the viscous drag vd = μf at low
Reynolds number, where μ is the mobility, and μ = 1/ζ with
ζ the friction coefficient. In fact, such relation is the basis
of an advantageous experimental technique known as NFM
(non-equilibrium force measurements),1–5 where the force is
directly extracted from particle trajectories, which has been
widely applied to colloid and polymer solutions.3, 4 Neverthe-
less, real systems are not always homogeneous, and the re-
lated inhomogeneities fundamentally influence their dynamic
behavior. This occurs, for example, in systems in confinement
where the diffusion coefficient is known to be dependent on
the particle distance to the wall.6 In such cases, it has been
shown7 that there is an additional contribution to the drift ve-
locity proportional to the gradient of diffusion coefficient,

vd = μf + ∇Ds. (1)

This means that the direct proportionality between the drift
velocity and the driving force breaks down. NFM measure-
ments of these systems, and the actual forces f, can have mis-
match in their magnitude and even their sign such that the
additional term in Eq. (1) is necessary to obtain consistent re-
sults. Recently, the validity of Eq. (1) has been quantitatively
verified by one of these NFM measurements,8, 9 and previ-
ously also by an experiment with irregular confinement.10, 11

In both cases though the use of Eq. (1) is justified by studying
the related Langevin equation with the requirement of a par-
ticular interpretation of the multiplicative noise. However, the
non-existence of an apparent Ito-Stratonovich dilemma which
concerns the noise interpretation has already been clarified in
the literature.7, 12, 13
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The previous considerations are valid for a large class
of inhomogeneous systems with an equilibrium stationary
state, for which the inhomogeneities arise from hydrodynamic
interactions.7 This is for instance the case of particles close to
a wall6, 14 or two particles mutual diffusion.15 Nonetheless,
there is another large class of inhomogeneous systems with
a non-equilibrium steady state. Of particular relevance are
systems where a position dependent self-diffusion coefficient
originates from temperature inhomogeneities. Equation (1)
has already been generalized,16 although its validity has not
yet been verified in such systems. Furthermore, due to the
development of single-particle tracking techniques, transport
coefficients have been quantified by directly measuring the
drift velocity, particularly the thermal diffusion coefficient of
a dilute suspension.17 Therefore, it is critically important to
establish a correct relation between the transport coefficients
and the drift velocity for future applications.

In this paper, we explore the more general framework
in which the drift velocity behavior is related to the inho-
mogeneous character of the system which can be isothermal
or non-isothermal. A general drift-force relation is obtained
using the van Kampen formula.18 This relation reduces to
Eq. (1) for constant temperature. Simultaneously, an expres-
sion of the particle flux based on the drift velocity is obtained
for the inhomogeneous system. We quantitatively check the
validity of these relations in temperature gradient systems by
performing non-equilibrium simulations. In terms of the val-
idated expressions, we discuss the relation between the drift
velocity and thermal diffusion coefficient.

II. THEORETICAL DESCRIPTION

Studies of inhomogeneous systems have received a con-
siderable theoretical attention since the beginning of last
century.7, 16, 18–21 However, there are still concerns about the
existence of a universal description of such inhomogeneous
systems, which implies that in principle each system needs to
be studied individually.21, 22
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Our starting point is a minimal model derived by van
Kampen from the extended Kramers equation18 valid in the
linear response regime. The equation characterizes the parti-
cle flux J in a dilute particle dispersion with a temperature
gradient

J(r) = nμ(r)f − μ(r)∇[n(r)kBT (r)]. (2)

Here, n is the particle concentration and T the temperature.
The force f was originally understood by van Kampen only as
externally applied forces, but Widder and Titulaer20 extended
this concept to consider as well mechanical driving forces ex-
erted on single particles by the surrounding fluid. Equation (2)
can be understood as a force balance equation on a volume
element.23, 24 The Brownian force ∇[n(r)kBT(r)] or gradient
of the ideal gas osmotic pressure23, 25 is not a real force and
arises from the momentum change in the volume element due
to particles entering into or departing from the volume ele-
ment. This is in contrast to the mechanical driving force nf
which is directly exerted on the particles of the volume el-
ement. The summation of these two forces balances then the
friction force related to a particle flux by J/μ. In the stationary
state with J = 0, Eq. (2) shows that the mechanical driving
force is balanced by the Brownian force, which can also be
seen in a multicomponent system from the equations of mo-
tion satisfied by each component.26 The steady-state Eq. (2)
has also been validated by computer simulations.24 Alterna-
tively, Eq. (2) can be understood as an extension of the Fick’s
law in the presence of a driving force and a temperature gra-
dient. Originally, Eq. (2) was obtained for a dilute suspension
of Brownian particles. However, when considering a tagged
particle in a concentrated solution, the environment can be
regarded as an effective solvent, such that Eq. (2) is correct
by considering f and μ as the driving force and the mobil-
ity of the tagged particle, that include both solute-solvent and
solute-solute contributions.

By adding and subtracting the term, kBT(r)∇μ(r), we can
rewrite Eq. (2) in terms of the drift velocity as

J(r) = n(r)vd − ∇ [n(r)Ds(r)] , (3)

with the drift velocity

vd = μf + kBT ∇μ. (4)

Equation (3) has been written with the assumption that the
local equilibrium approximation holds, and in particular the
Einstein relation Ds(r) = kBT(r)μ(r) is valid. Further away
from equilibrium, generalizations of the Einstein relation may
eventually also be employed.27 Note that the self-diffusion co-
efficient Ds(r) is related to the mean-squared-displacement or
velocity autocorrelation function of a tagged particle, which
is well defined in multicomponent systems.28, 29 Differently,
some authors exclusively use the name self-diffusion coef-
ficient for single-component systems.30 In the presence of
temperature gradients, the additional drift in Eq. (4) has
been previously discussed for example by Landauer31 and by
Bringuier.16 Equation (4) shows that the extra drift is propor-
tional to the gradient of mobility rather than to the gradient of
self-diffusion coefficient, which reduces to Eq. (1) in isother-
mal situations.
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net friction

(a) ρ
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T
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FIG. 1. (a) If a particle moves equally in all directions, an space-dependent
friction coefficient leads to a net friction force towards lower friction areas.
(b) Brownian particle drift in a temperature gradient.

Combining Eq. (3) with the continuity equation allows us
to identify vd with the drift velocity defined as

vd = ∂

∂t

∫
rP (r, t)dV, (5)

where P(r, t) is the position distribution function of a tagged
particle. This means that vd can be quantified by evaluating
the mean displacement of a single particle. It is important to
emphasize that this drift velocity is related to diffusion and
it should be understood on a Brownian time scale. Similar to
the mean-squared-displacement, the drift velocity has a short-
time regime, and a long-time regime where it may reach a
non-zero constant value.

Additionally, Eq. (3) shows the relation between the drift
velocity vd and the flux velocity J(r)/n(r). The flux velocity
concerns the net mass transport, that can be evaluated by aver-
aging the instantaneous velocity of particles in a small volume
element around r. Equation (3) relates therefore the difference
between the drift and the flux velocity to the spatial variation
of the product of density and self-diffusion coefficient.

A. Intuitive picture of the additional drift term

From Eq. (4), it can be inferred that particle drift with-
out mechanical driving force can occur when the friction is
position dependent. In order to give an intuitive picture of
this phenomenon, we first consider a suspension with a fric-
tion coefficient independent of position. If the particle moves
faster in one particular direction, a net friction force appears
in the opposite direction, such that a driving force is neces-
sary to sustain the drift. We consider now a suspension with
a position dependent friction. If the particle moves with the
same preference in all directions (no drift), then a net friction
force will appear towards the region with lower friction co-
efficient as shown in Fig. 1(a). An opposing driving force is
then required to sustain the symmetric motion. In the absence
of any mechanical driving force, the particle will therefore
spontaneously drift towards areas with higher mobility (lower
friction).

III. SIMULATIONS WITH A TEMPERATURE GRADIENT

In order to quantitatively test the validity of the previous
theory in the non-isothermal systems, two types of simula-
tions are performed. The first is a single Brownian particle
with a position dependent temperature, and the second one is
a binary mixture of Lennard-Jones particles.

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



204508-3 M. Yang and M. Ripoll J. Chem. Phys. 136, 204508 (2012)

A. Single Brownian particle

First we study a single Brownian particle interacting with
a thermal bath whose temperature T(r) linearly varies in space
(Fig. 1(b)). This means that the particle stochastically inter-
changes momentum and energy with an environment that has
no structure apart from a position dependent temperature. To
our knowledge, these are the first Brownian simulations com-
bined with a temperature gradient.

Technically, the particle motion is implemented through
a method known as random-multiparticle collision dynamics
(MPC). This algorithm was proposed in Ref. 32 as a part-
ner method of the MPC solvent, and it is therefore impor-
tant to understand the relation between both methods. The
MPC method properly takes into account the solvent induced
hydrodynamic interactions by explicitly considering coarse
grained solvent particles.33, 34 However, the idea of random-
MPC is to replace the explicit coarse grained solvent by a
thermal bath, suppressing all solvent correlations. The Brow-
nian particle is defined by its mass M, position r, and veloc-
ity v, and moves according to two alternating steps. In the
streaming step, the particle moves ballistically during a colli-
sion time h, i.e., r(t + h) = r(t) + hv(t). In the collision step,
the particle gets/liberates momentum and energy from/to a
thermal bath, which is locally assumed to have a mass Mb(r)
and momentum Pb(r). This may be understood as the in-
teraction with virtual particles from the thermal bath whose
properties are position dependent. The collision consists of a
stochastic rotation of the Brownian particle velocity relative to
the center-of-mass velocity of the Brownian particle and the
virtual particles, vcm, by an angle α around a random axis,

v(t + h) = vcm(t) + R(α)[v(t) − vcm(t)], (6)

where R(α) is the rotation matrix. The center-of-mass veloc-
ity is

vcm = Mv + Pb(r)

M + Mb(r)
. (7)

In standard MPC with explicit coarse grained solvent par-
ticles, Mb(r) and Pb(r) refer to the total mass and momen-
tum of the solvent particles within a collision cell. The local
mass can further be expressed as Mb(r) = mρ(r) with m the
particle mass and ρ(r) the number of particles in the colli-
sion cell, this can be understood as a dimensionless number
density. The MPC solvent satisfies the ideal gas equation of
state, such that ρ(r) varies inversely with the temperature.33, 35

However, in the random-MPC simulation, Pb(r) is directly se-
lected from a Maxwell-Boltzmann distribution with variance
Mb(r)kBT(r) with kB the Boltzmann constant and zero mean.
The functional dependencies for T(r), and Mb(r) can be cho-
sen. As illustrated in Fig. 1(b), in our simulations we opt for
the same dependence as in standard MPC, namely Mb(r)T(r)
= A with A a constant factor. This choice implies that Pb(r) is
in fact not position dependent, and that only Mb(r) remains as
position dependent. Simulations are performed with M = 5m,
with m the reference mass, α = 130◦, the mean temperature
kBT = 1, A = 5.25, and varying h. These values are similar to
those in related simulations with the standard MPC model.35

The employed parameters are related with the coupling of

the Brownian particle and the thermal bath, and determine
the thermal bath properties such as the friction coefficient.32

Therefore, in contrast to what the particular choice of M/m
may seem to indicate, these parameters do not reflect other
microscopic information, such that the masses of the Brown-
ian particle and the microscopic underlying solvent particles
could still be separated by orders of magnitude. In the simula-

tion results, time and length are scaled in terms of
√

kBT /ma2

and a, respectively, with a the reference length.
Apart from the technical details of its particular imple-

mentation, random-MPC has to be understood as the inter-
action with a thermal bath, similar to a standard Brownian
dynamics simulation (BD). The main difference is that in BD
frictional and stochastic forces are imposed, with coefficients
that satisfy by construction the Einstein relation. In random-
MPC only the stochastic collision with virtual particles is im-
posed. Friction and thermal fluctuations are a consequence of
such collision rule, and the Einstein relation can be proved
to be automatically satisfied (see Appendix). Particularly in-
teresting in random-MPC is that the transport properties can
be directly compared with standard MPC, and especially that
inhomogeneities are easily taken into account.

The mean displacement of a Brownian particle �r(t)
= r(t) − r(0) can then be straightforwardly obtained. An ex-
ample is displayed in Fig. 2(a) for different directions. Single
trajectories are changing direction wildly such that averaging
over many realizations is necessary. In the direction of the
gradient, the averaged displacement is linearly increasing to-
wards the warm direction, while it is vanishing in the two per-
pendicular directions. The slope of �r with t determines vd .
Figure 2(b) presents values of the measured drift velocities,
showing a linear dependence with the temperature gradient
and the random-MPC collision time.
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FIG. 2. (a) Particle displacement as a function of time, parallel and perpen-
dicular to the temperature gradient, with h = 0.1 and ∇T/T = 0.005. Posi-
tive displacement goes to hot. Lines are single trajectories downscaled by a
factor 500, symbols are averaged over 109 trajectories. (b) Drift as a function
of ∇T for various h values. Symbols are simulation results and lines theoret-
ical predictions in Eq. (9).
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In order to test Eq. (4), the quantities on the right side
need to be quantified, i.e., f and μ. In principle, they could be
directly computed in simulations. However, for the random-
MPC model this is not necessary, since both quantities can
be analytically exactly obtained. First, the mechanical driv-
ing forces, f, exerted on the Brownian particle are zero by
construction. This can be seen since the bath precisely fol-
lows the local Maxwell-Boltzmann distribution (exact local
equilibrium), which implies that the non-equilibrium mechan-
ical driving force,36 induced by the deviation of the distribu-
tion function from the local Maxwell-Boltzmann distribution,
is completely vanishing. Consequently, the first term on the
right side of Eq. (4) vanishes such that the non-vanishing val-
ues shown in Fig. 2 already prove the existence of an extra
drift contribution non-proportional to the driving force. Sec-
ond, the simple collision rule in the random-MPC allows us
to analytically calculate the expression of the mobility of the
Brownian particle in the random-MPC (see calculation details
in the Appendix),

μ(r) = h

M

[
1

γαγb(r)
− 1

2

]
, (8)

where γ α = 2(1 − cos α)/3 and γ b(r) = 1 − M/[Mb(r) + M].
Thus, the analytical prediction of vd can be obtained in

terms of Eq. (8) as

vd = h

Aγα

kBT ∇T . (9)

The linear dependence of vd with ∇T and h observed in
Fig. 2(b) is then explained by Eq. (9). Equation (4) can be
tested by comparing the drift velocity obtained in the simula-
tions with the analytical prediction, which has no adjustable
parameters. In Fig. 2(b), the measured drift velocities for sev-
eral temperature gradients and simulation parameters are dis-
played together with their theoretical predictions showing a
perfect agreement. The agreement is so good since the ap-
proximations in the analytical calculation are exactly fulfilled
for this example, and the single-particle simulations can be
performed with very high statistical accuracy.

On the other hand, the fact that mechanical driving force
exerted on the Brownian particle is zero, implies that the
Brownian particle obeys the ideal gas equation of state, such
that the density profile that is imposed for the thermal bath and
sketched in Fig. 1(b) happens to apply as well to the Brown-
ian particle. It could be therefore counter-intuitive to note that
drift velocity occurs in the direction where the Brownian par-
ticle has a lower concentration.

Random-MPC offers us an ideal opportunity to study
the drift velocity induced by the non-uniform mobility term,
since the mechanical driving force is completely vanishing.
The drift velocity relation in Eq. (4) though is much more
general since it is valid as long as the van Kampen equation
in Eq. (2) applies. If instead of random-MPC, another
system would be chosen, the exact local thermal equilibrium
could not be completely fulfilled and then the deviation
from the Maxwell-Boltzmann distribution would produce a
non-equilibrium mechanical driving force on the suspended
particle.36, 37 Thus, besides the non-uniform mobility, the
mechanical driving force would also contribute to the drift

velocity. Therefore Eq. (4) would still be valid, although
the evaluation of the related quantities would become more
involved.

B. Systems of Lennard-Jones particles

In the second simulation example, we consider a non-
equilibrium case with nonzero mechanical driving force. In
this case, we precisely verify Eq. (3) in the stationary state,
which together with the validation of the steady-state Eq. (2)
presented in Ref. 24 completes the quantitative verification of
Eq. (4). We study systems of Lennard-Jones particles com-
posed by one or two components with linear temperature pro-
file. In the case of a molecular mixture, Eqs. (2)–(4) apply to
each component, when the observables are related to the cor-
responding component. In a Lennard-Jones system, particles
i and j at a distance rij ≤ 2.5σ ij interact via

ULJ (rij ) = 4εij

[(
σij

rij

)12

−
(

σij

rij

)6
]

, (10)

where εij is the potential depth and σ ij the particle diame-
ter. This system has extensively been studied in the presence
of temperature gradients,38–40 although the focus has always
been to determine the Soret coefficient instead of the drift
velocity as in the present work. The particle masses are set
equal m11 = m22, and the interaction parameters between un-
like particles are determined by the Lorentz-Berthelot mix-
ing rules, ε12 = √

ε11ε22, and σ 12 = (σ 11 + σ 22)/2. Quan-
tities are expressed in reduced units, i.e., m22, σ 22, and ε22

are set to 1, with T* = kBT/ε12, ρ∗ = ρσ 3
12. The typical sys-

tem size is 60σ 22 in the ∇T direction and 12.5σ 22 in the
perpendicular one.

The temperature gradient is imposed by employing
boundary-driven non-equilibrium molecular dynamics. This
consist of defining a cold layer at one boundary, and a parallel
hot layer at the center, together with periodic boundary condi-
tions. An energy flux is then externally imposed from the cold
to the hot layer, which translates into an opposite energy flux
and a temperature gradient in between such layers.41, 42 The
mean temperature remains fixed by using the Berendsen ther-
mostat. In the steady state, there is no mass flux, and vd , n(r)
and T(r) can be directly measured. It should be emphasized
that in the steady state although the flux velocity is vanish-
ing, the drift velocity still can be independently determined.
The displacement is calculated by tracking the trajectory of
particles randomly chosen from the region far away from the
boundaries. The tracking time must be small enough for the
particle not to be able to arrive to the cold or warm boundaries,
but large enough to reach the diffusive time regime. The aver-
aged particle displacement of species 1 in the LJ gas mixture
in Fig. 3(a) shows to increase linearly in the direction paral-
lel to the temperature gradient and not in the perpendicular
ones, such that vd can be determined. In Fig. 3(a) it can be
observed that for short times, the diffusive time scale has not
been reached, and the drift velocity still varies with time.

In order to quantitatively verify Eq. (3) the gradient of
the self-diffusion coefficient has to be determined. Ds is ob-
tained by measuring the particle mean-squared-displacement
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FIG. 3. Results for particles of species 1 in equimolar LJ gas mixture (quan-
tities expressed in reduced units and parameters in Table I). (a) Particle
mean displacement averaged over 3 × 107 trajectories as a function of time.
(b) Self-diffusion coefficient versus temperature. Symbols are simulation re-
sults and the line is a linear fit.

in separate equilibrium simulations in the isothermal-isobaric
ensemble at different imposed temperatures, and varying par-
ticle molar fractions that corresponds to the local quantities of
the non-equilibrium simulation. Performing these equilibrium
simulations is meaningful since the temperature gradients em-
ployed in the non-isothermal simulations are small enough
such that the local equilibrium approximation can be applied.
Results displayed in Fig. 3(b) show a linear increase of the
self-diffusion with temperature from which ∇Ds can be cal-
culated. With this, the three contributions in Eq. (3) have been
independently measured such that the expression can be quan-
titatively verified. Simulation parameters and results are sum-
marized in Table I and show that Eq. (3) is very convincingly
satisfied within the error of the measurements. The results of
the equimolar mixtures imply that Eq. (3) is valid for both
diluted and concentrated solutions. This is relevant since van
Kampen derived Eq. (2) for a dilute Brownian particle sus-
pension where μ referred to the mobility of a single particle
in a background random solvent. However, when considering
a tagged particle in a concentrated solution, like an equimo-
lar liquid mixture of Lennard-Jones particles, the environment
can be regarded as an effective solvent. Equations (2)–(4) are
then correct by understanding all quantities referred to those

TABLE I. Drift velocity measurements in LJ systems obtained from direct
measurement and from the calculation of the gradients. Results correspond
to: (a) single component gas with mean temperature T* = 2 and density ρ*
= 0.26. (b) gas equimolar mixture with T* = 2 and ρ* = 0.34. The parameter
ratios are σ 11 = 1.2σ 22 and ε11 = ε22. s1, s2 stand respectively for species
1 and 2. c) liquid equimolar mixture with T* = 0.85, ρ* = 0.81, σ 11 = σ 22,
and ε11 = 2ε22.

System vd × 103 ∇(Dsn)/n × 103

(a) pure gas 6.5(3) 6.1(7)
(b) gas mixt. s1 4.2(3) 3.9(6)

gas mixt. s2 5.1(5) 4.8(4)
(c) liquid mixt. s1 0.92(9) 1.00(8)

liquid mixt. s2 2.2(2) 2.2(2)

of a tagged particle, and in particular Ds related to the mean
square displacement of the tagged particle.

From the results in Table I, various conclusions can
be drawn. First, the single-component gas result in Table I
(a), confirms Brenner’s prediction about the existence of a
drift velocity in a steady-state single-component solvent.43 In-
dependently from the volume transport theory presented in
Ref. 43, the result can be straightforwardly understood from
Eq. (3) since all related quantities are uniquely defined in-
dependent of the number of components. Second, all the
presented drift velocities occur in the direction of increasing
temperatures. In these systems the gradient of mobility points
always to the warm side. These results seem to indicate that
this contribution is more important than the related mechani-
cal forces in Eq. (4). A different situation would be in case of
systems such as colloidal suspensions where the mechanical
driving forces can be dominant and point to both directions
depending on the particular interactions. And finally, the fact
that the agreement shown in Table I applies to both compo-
nents in the mixtures, constitutes an example of the validity
of Eq. (3) in systems both with positive and negative ther-
mophoresis.

IV. THERMOPHORETIC VELOCITY

One of the most relevant phenomena appearing in the
presence of a temperature gradient is known as thermal dif-
fusion or Soret effect and it refers to the mass flux induced in
fluid mixtures by the temperature gradient.44, 45 The effect is
ubiquitous in non-isothermal fluid mixtures, such as colloidal
suspensions and molecular mixtures. In this section, we es-
tablish a relation between the drift velocity and the thermal
diffusion coefficient of a dilute solution through the particle
flux Eq. (3), which is essential for experimentally determin-
ing the thermal diffusion coefficient from the single-particle
tracking.17 For binary mixtures, the particle flux can be phe-
nomenologically expressed as,

J = −ñDm∇x − ñx(1 − x)DT ∇T . (11)

This is also the standard definition of the thermal diffusion
coefficient DT. Dm is the mutual diffusion coefficient, and
ST = DT/Dm is the so-called Soret coefficient. x = n/ñ is the
solute mole fraction, and here, ñ = n + n′ is the total number
density, being n and n′ the number density of the two compo-
nents. In the dilute case (n � n′ and Dm 	 Ds),28 the compar-
ison of Eqs. (3) and (11) leads to,

DT ∇T = ∇Ds − Dsβ∇T − vd , (12)

with β = (−1/n′)∂n′/∂T the solvent thermal expansion coeffi-
cient. This expression has already been obtained by Bringuier
in Ref. 46 following an alternative route.

The thermophoretic velocity vT defined just as,

vT ≡ −DT ∇T , (13)

is of standard use in the literature.17, 45, 47 Nevertheless, Eq.
(12) shows that vT does not exactly correspond to the mea-
surable drift velocity vd . The expression vT 	 vd can just
be considered as a good approximation only when |DT| �
|dDs/dT − Dsβ|, which is indeed the case in most complex
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fluids.17, 47, 48 In a recent work,49 we propose a model to sim-
ulate a colloid in a temperature gradient. The importance of
these two additional terms is quantified to be 0.5% of the last
term within the employed model and parameters. Neverthe-
less, for colloidal suspensions with low DT/Ds (particularly,
in the region of DT changing sign), low-weight polymer so-
lutions or molecular mixtures, the first two terms on the right
side of Eq. (12) are comparable with vd and even larger, and
thus need to be considered. Because Eq. (3) used to obtain Eq.
(12) has been quantitatively verified in Sec. III, our simulation
results present a quantitative support to Eq. (12).

Finally, we want to emphasize that Eq. (12) is valid only
in the dilute regime. However, the drift velocity will not be
directly proportional in general to the thermal diffusion co-
efficient in the concentrated regime. Our results for the LJ
mixture in Table I constitute a very clear example. By defini-
tion, the Soret coefficient of the two components of a mixture
are equal with opposite signs, ST, 1 = −ST, 2, such that the two
corresponding DT will also have opposite signs. The velocity
vd has though the same direction in both cases, which implies
that vd and vT have even opposite directions for one of these
components.

V. DISCUSSION AND CONCLUSIONS

The validity of the relation between drift velocity and
mechanical driving force stated in Eq. (4) has been investi-
gated in Sec. III by means of computer simulations in non-
isothermal suspensions. For inhomogeneous systems with
uniform temperature, Eq. (4) straightforwardly reduces to
Eq. (1). As mentioned in the Introduction, Eq. (1) has been
quantified by a recent experiment of colloidal dispersion,8, 9

in which the temperature of the system is uniform and the
inhomogeneity is due to hydrodynamic interactions between
the particles and the boundary wall.6, 14 In that experiment,8, 9

Volpe et al. measure both the mechanical forces exerted on
the particle and the resultant total drift velocity, from which
the extra drift velocity term is characterized. The extra drift
velocity perfectly agrees with ∇Ds obtained from theoretical
calculation.6 Therefore, Eq. (4) embraces the description of
all isothermal and non-isothermal inhomogeneous cases, such
that it can be regarded as the most generalized drift-force re-
lation in inhomogeneous suspensions, as long as the system is
in the linear response regime.

Drift without or against particle accumulation can occur
in inhomogeneous suspensions. These interesting and even
counter-intuitive behaviors can be understood in terms of the
particle flux equation involving the drift velocity, i.e., Eq. (3).
In a homogeneous system without flux, a non-vanishing drift
velocity is necessarily accompanied by a particle accumula-
tion in the same direction. This occurs for example in a sed-
imentation system confined in the gravity direction.50 How-
ever, in an inhomogeneous system, the particle flux arising
from the drift velocity may precisely cancel with the one due
to the gradient of self-diffusion coefficient in Eq. (3), which
translates into a drift in the absence of particle accumulation.
This is indeed the case in the irregular confinement system of
Lançon et al.10 In their experiments, a colloidal suspension
is confined between wedged walls without suffering any me-

chanical driving force. This geometry produces an increase of
the self-diffusion coefficient with separation between walls.
In the stationary state, a drift velocity of the individual par-
ticles is observed in the direction of the diffusion coefficient
gradient, but with constant concentration. In the simulations
with temperature gradients presented in this work, the con-
centration of the particles is mostly larger in the region of low
temperature, e.g., in the case of the Brownian particle and the
LJ gas, while the related drift velocities point to the hot area.
Therefore, this constitutes an example where the drift occurs
in the opposite direction to the particle accumulation.

All the simulations presented in this work are performed
in steady states. Nevertheless, we expect that Eqs. (3) and (4)
are still valid in unsteady states, as long as the typical relax-
ation time of the system is larger than the diffusive time scale.
Furthermore, our results broaden the validity of theory to sys-
tems in which all components have similar sizes and masses,
such as molecular mixtures. This is since the original frame-
work in Eq. (2) was postulated for purely Brownian motion,
where solute and solvent have related scales separated by or-
ders of magnitude. Conversely, simulations with colloidal sus-
pensions are also expected to confirm Eqs. (3) and (4).

In summary, this paper revisits the fundamental concept
of extra drift that appears in systems where the self-diffusion
or mobility are spatially varying. In the presence of tempera-
ture gradients, two types of simulations allow us to quantita-
tively support the theoretical framework for the first time in
non-equilibrium and to broaden its validity. First we propose
a method to combine a Brownian simulation with a tempera-
ture gradient. The Brownian particle shows the appearance of
a drift velocity towards decreasing friction and warmer areas
in the absence of any mechanical driving force. Second, stan-
dard simulations of Lennard-Jones particles in the absence
of mass flux verify the relation between the drift velocity
and the gradients of density and self-diffusion coefficient in
Eq. (3), in a situation where the Einstein relation is valid. In a
recent work,24 we further verify the steady-state force balance
condition in Eq. (2), which together with the actual results
complete the quantitative verification of Eq. (4). As a conse-
quence of the validated expression for the mass flux in Eq. (3),
it can be demonstrated that the thermophoretic velocity is not
necessarily equivalent to the measurable drift velocity, albeit
this is widely accepted. Due to the development of microscale
single-particle tracking techniques, the correct understanding
of the drift velocity in isothermal and non-isothermal inhomo-
geneous systems appears then to be of high importance from
a fundamental and technological viewpoints.
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APPENDIX: EINSTEIN RELATION FOR RANDOM MPC

In this appendix we calculate the particle mobility μ and
prove the Einstein relation for a particle interacting with a
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random-MPC solvent. The motion of a Brownian particle of
mass M and velocity v can be described by the Langevin equa-
tion as,

M v̇ = − 1

μ
v + fξ , (A1)

with fξ the stochastic force. In case the time evolution is dis-
cretized with a collision time h, as in random-MPC, the con-
tinuous acceleration v̇ can be approximated in terms of the
discrete pre- and post-collision velocities as

v̇(t + h/2) = 1

h
[v(t + h) − v(t)] , (A2)

and the corresponding velocity reads

v(t + h/2) = 1

2
[v(t + h) + v(t)] . (A3)

Inserting Eqs. (A2) and (A3) into (A1), we have

M

h
[v(t + h) − v(t)] = − 1

2μ
[v(t + h) + v(t)] + fξ , (A4)

In order to obtain μ, the collisional average is taken in
both sides of Eq. (A4),

M

h
〈v(t + h) − v(t)〉 = − 1

2μ
〈v(t + h) + v(t)〉 , (A5)

since 〈fξ 〉 vanishes. The collisional average of the random-
MPC includes averaging over the orientation of the random
rotation and over the momentum distribution of the virtual
particles. To calculate the averages in Eq. (A5), the MPC col-
lision rule in Eq. (6) is employed

〈v(t + h) − v(t)〉 = 〈[R(α) − I ] [v(t) − vcm(t)]〉 , (A6)

with I the unity matrix. The rotational average of an arbitrary
vector A can be calculated by geometrical arguments for ro-
tations in three dimensions around an arbitrary axis to be

〈(R(α) − I )A〉 = −γα 〈A〉 , (A7)

with γ α = 2(1 − cos α)/3. Considering the definition of vcm

for the random-MPC in Eq. (7), and calculating the momen-
tum average we obtain,

〈v(t + h) − v(t)〉 = −γαγb 〈v(t)〉 , (A8)

with γ b = Mb/(M + Mb). Similarly,

〈v(t + h) + v(t)〉 = (2 − γαγb) 〈v(t)〉 . (A9)

Substituting now Eqs. (A8) and (A9) into (A5), we finally ob-
tain the mobility

μ = h

M

2 − γαγb

2γαγb

. (A10)

It can be seen that the expression in Eq. (A10) is just Eq. (8),
where the position dependence of Mb(r) and therefore of μ(r)
have also been accounted for.

The self-diffusion coefficient of a heavy particle in a
MPC-fluid has been calculated34, 51 from the Green-Kubo
formalism D = 1/3

∫ ∞
0 dt 〈v(t)v(0)〉 by assuming molecu-

lar chaos and following a similar averaging procedure as
here. The result can be expressed as D = kBTμ, with μ in

Eq. (8). The molecular chaos assumption neglects all cor-
relations of the interacting solvent at different times. This
assumption has shown to be imprecise34, 52 for the standard
MPC solvent where hydrodynamic interactions are of impor-
tance, but it is by construction exact in random-MPC. This
means that the Einstein relation is proved to be exactly ful-
filled in random-MPC. For standard MPC, this would also be
the case if the molecular chaos assumption holds, but it would
not provide any additional information otherwise.

1P. Poulin, V. Cabuil, and D. A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).
2J. C. Neto, R. Dickman, and O. N. Mesquita, Physica A 345, 173
(2005).

3S. K. Sainis, V. Germain, and E. R. Dufresne, Phys. Rev. Lett. 99, 018303
(2007).

4P. Wu, R. Huang, C. Tischer, A. Jonas, and E.-L. Florin, Phys. Rev. Lett.
103, 108101 (2009).

5J. W. Merrill, S. K. Sainis, and E. R. Dufresne, Phys. Rev. Lett. 103, 138301
(2009).

6H. Brenner, Chem. Eng. Sci. 16, 242 (1961).
7A. W. Lau and T. C. Lubensky, Phys. Rev. E 76, 011123 (2007).
8G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger, Phys.
Rev. Lett. 104, 170602 (2010).

9T. Brettschneider, G. Volpe, L. Helden, J. Wehr, and C. Bechinger, Phys.
Rev. E 83, 041113 (2011).

10P. Lançon, G. Batrouni, L. Lobry, and N. Ostrowsky, Europhys. Lett. 54,
28 (2001).

11P. Lançon, G. Batrouni, L. Lobry, and N. Ostrowsky, Physica A 304, 65
(2002).

12N. van Kampen, Stochastic Processes in Physics and Chemistry (North-
Holland, Amsterdam, 1992), Chap. IX and X.

13J. M. Sancho, Phys. Rev. E 84, 062102 (2011).
14P. Holmqvist, J. K. G. Dhont, and P. R. Lang, Phys. Rev. E 74, 021402

(2006).
15J. C. Crocker, J. Chem. Phys. 106, 2837 (1997).
16E. Bringuier and A. Bourdon, J. Non-Equil. Thermodyn. 32, 221

(2007).
17S. Duhr and D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678

(2006).
18N. van Kampen, J. Phys. Chem. Solids 49, 673 (1988).
19S. Chapman, Proc. R. Soc. London, Ser. A 119, 34 (1928).
20M. E. Widder and U. M. Titulaer, Physica A 154, 452 (1989).
21M. J. Schnitzer, Phys. Rev. E 48, 2558 (1993).
22N. van Kampen, Z. Phys. B 68, 135 (1987).
23J. K. G. Dhont, J. Chem. Phys. 120, 1642 (2004).
24M. Yang and M. Ripoll, J. Phys. Condens Matter 24, 195101 (2012).
25F. Jülicher and J. Prost, Eur. Phys. J. E 29, 27 (2009).
26R. Bearman and J. Kirkwood, J. Chem. Phys. 28, 136 (1958).
27D. Rings, R. Schachoff, M. Selmke, F. Cichos, and K. Kroy, Phys. Rev.

Lett. 105, 090604 (2010).
28G. Jacucci and I. McDonald, Physica A 80, 607 (1975).
29D. L. Jolly and R. J. Bearman, Mol. Phys. 41, 137 (1980).
30R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd

ed. (Wiley, 2002).
31R. Landauer, J. Stat. Phys. 53, 233 (1988).
32M. Ripoll, R. G. Winkler, and G. Gompper, Eur. Phys. J. E 23, 249

(2007).
33A. Malevanets and R. Kapral, J. Chem. Phys. 110, 8605 (1999).
34M. Ripoll, K. Mussawisade, R. G. Winkler, and G. Gompper, Phys.

Rev. E 72, 016701 (2005).
35D. Lüsebrink and M. Ripoll, J. Chem. Phys. 136, 084106 (2012).
36E. Bringuier and A. Bourdon, Physica A 385, 9 (2007).
37S. Chapman and T. Cowling, The Mathematical Theory of Non-uniform

Gases (Cambridge University Press, Cambridge, 1939).
38D. Reith and F. Müller-Plathe, J. Chem. Phys. 112, 2436 (2000).
39G. Galliéro, B. Duguay, J.-P. Caltagirone, and F. Montel, Fluid Phase Equi-

lib. 208, 171 (2003).
40P. A. Artola and B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007).
41B. Hafskjold, T. Ikeshoji, and S. K. Ratkje, Mol. Phys. 80, 1389

(1993).
42F. Müller-Plathe, J. Chem. Phys. 106, 6082 (1997).
43H. Brenner, Phys. Rev. E 74, 036306 (2006).

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.79.4862
http://dx.doi.org/10.1016/S0378-4371(04)00988-4
http://dx.doi.org/10.1103/PhysRevLett.99.018303
http://dx.doi.org/10.1103/PhysRevLett.103.108101
http://dx.doi.org/10.1103/PhysRevLett.103.138301
http://dx.doi.org/10.1016/0009-2509(61)80035-3
http://dx.doi.org/10.1103/PhysRevE.76.011123
http://dx.doi.org/10.1103/PhysRevLett.104.170602
http://dx.doi.org/10.1103/PhysRevLett.104.170602
http://dx.doi.org/10.1103/PhysRevE.83.041113
http://dx.doi.org/10.1103/PhysRevE.83.041113
http://dx.doi.org/10.1209/epl/i2001-00103-6
http://dx.doi.org/10.1016/S0378-4371(01)00510-6
http://dx.doi.org/10.1103/PhysRevE.84.062102
http://dx.doi.org/10.1103/PhysRevE.74.021402
http://dx.doi.org/10.1063/1.473381
http://dx.doi.org/10.1515/JNETDY.2007.014
http://dx.doi.org/10.1073/pnas.0603873103
http://dx.doi.org/10.1016/0022-3697(88)90199-0
http://dx.doi.org/10.1098/rspa.1928.0082
http://dx.doi.org/10.1016/0378-4371(89)90259-8
http://dx.doi.org/10.1103/PhysRevE.48.2553
http://dx.doi.org/10.1007/BF01304217
http://dx.doi.org/10.1063/1.1633547
http://dx.doi.org/10.1088/0953-8984/24/19/195101
http://dx.doi.org/10.1140/epje/i2008-10446-8
http://dx.doi.org/10.1063/1.1744056
http://dx.doi.org/10.1103/PhysRevLett.105.090604
http://dx.doi.org/10.1103/PhysRevLett.105.090604
http://dx.doi.org/10.1016/0378-4371(75)90121-1
http://dx.doi.org/10.1080/00268978000102631
http://dx.doi.org/10.1007/BF01011555
http://dx.doi.org/10.1140/epje/i2006-10220-0
http://dx.doi.org/10.1063/1.478857
http://dx.doi.org/10.1103/PhysRevE.72.016701
http://dx.doi.org/10.1103/PhysRevE.72.016701
http://dx.doi.org/10.1063/1.3687168
http://dx.doi.org/10.1016/j.physa.2007.06.011
http://dx.doi.org/10.1063/1.480809
http://dx.doi.org/10.1016/S0378-3812(03)00030-X
http://dx.doi.org/10.1016/S0378-3812(03)00030-X
http://dx.doi.org/10.1103/PhysRevLett.98.125901
http://dx.doi.org/10.1080/00268979300103101
http://dx.doi.org/10.1063/1.473271
http://dx.doi.org/10.1103/PhysRevE.74.036306


204508-8 M. Yang and M. Ripoll J. Chem. Phys. 136, 204508 (2012)

44S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004).
45R. Piazza and A. Parola, J. Phys.: Condens. Matter 20, 153102

(2008).
46E. Bringuier, Phil. Mag. 87, 873 (2007).
47A. Würger, Rep. Prog. Phys. 73, 126601 (2010).
48D. Stadelmaier and W. Köhler, Macromolecules 41, 6205

(2008).

49D. Lüsebrink, M. Yang, and M. Ripoll, “Thermophoresis of colloids by
mesoscale simulations,” J. Phys.: Condens. Matter (in press).

50W. Russel, D. Saville, and W. Schowalter, Colloidal dispersions
(Cambridge University Press, 1995).

51E. Tüzel, M. Strauss, T. Ihle, and D. M. Kroll, Phys. Rev. E 68, 036701
(2003).

52E. Tüzel, T. Ihle, and D. M. Kroll, Phys. Rev. E 74, 056702 (2006).

Downloaded 16 May 2013 to 134.94.122.141. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1088/0953-8984/16/10/R02
http://dx.doi.org/10.1088/0953-8984/20/15/153102
http://dx.doi.org/10.1080/14786430601003841
http://dx.doi.org/10.1088/0034-4885/73/12/126601
http://dx.doi.org/10.1021/ma800891p
http://dx.doi.org/10.1103/PhysRevE.68.036701
http://dx.doi.org/10.1103/PhysRevE.74.056702

