001     21347
005     20200702121620.0
024 7 _ |a 10.1029/2011WR011607
|2 DOI
024 7 _ |a WOS:000304253000002
|2 WOS
024 7 _ |a 2128/20539
|2 Handle
037 _ _ |a PreJuSER-21347
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Limnology
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Rings, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB85768
245 _ _ |a Bayesian model averaging using particle filtering and Gaussian mixture modeling: Theory, concepts, and simulation experiments
260 _ _ |a Washington, DC
|b AGU
|c 2012
300 _ _ |a W05520
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Water Resources Research
|x 0043-1397
|0 5958
|v 48
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Jasper A. Vrugt would like to acknowledge financial support from the LDRD project "Multilevel Adaptive Sampling for Multiscale Inverse Problems'' of the Los Alamos National Laboratory.
520 _ _ |a Bayesian model averaging (BMA) is a standard method for combining predictive distributions from different models. In recent years, this method has enjoyed widespread application and use in many fields of study to improve the spread-skill relationship of forecast ensembles. The BMA predictive probability density function (pdf) of any quantity of interest is a weighted average of pdfs centered around the individual (possibly bias-corrected) forecasts, where the weights are equal to posterior probabilities of the models generating the forecasts, and reflect the individual models skill over a training (calibration) period. The original BMA approach presented by Raftery et al. (2005) assumes that the conditional pdf of each individual model is adequately described with a rather standard Gaussian or Gamma statistical distribution, possibly with a heteroscedastic variance. Here we analyze the advantages of using BMA with a flexible representation of the conditional pdf. A joint particle filtering and Gaussian mixture modeling framework is presented to derive analytically, as closely and consistently as possible, the evolving forecast density (conditional pdf) of each constituent ensemble member. The median forecasts and evolving conditional pdfs of the constituent models are subsequently combined using BMA to derive one overall predictive distribution. This paper introduces the theory and concepts of this new ensemble postprocessing method, and demonstrates its usefulness and applicability by numerical simulation of the rainfall-runoff transformation using discharge data from three different catchments in the contiguous United States. The revised BMA method receives significantly lower-prediction errors than the original default BMA method (due to filtering) with predictive uncertainty intervals that are substantially smaller but still statistically coherent (due to the use of a time-variant conditional pdf).
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Vrugt, J.A.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Schoups, G.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Huisman, J.A.
|b 3
|u FZJ
|0 P:(DE-Juel1)129472
700 1 _ |a Vereecken, H.
|b 4
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |a 10.1029/2011WR011607
|g Vol. 48, p. W05520
|p W05520
|q 48|0 PERI:(DE-600)2029553-4
|t Water resources research
|v 48
|y 2012
|x 0043-1397
856 7 _ |u http://dx.doi.org/10.1029/2011WR011607
856 4 _ |u https://juser.fz-juelich.de/record/21347/files/Rings_et_al-2012-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21347/files/Rings_et_al-2012-Water_Resources_Research.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21347/files/Rings_et_al-2012-Water_Resources_Research.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21347/files/Rings_et_al-2012-Water_Resources_Research.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21347/files/Rings_et_al-2012-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:21347
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-259H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k IBG-3
|l Agrosphäre
|g IBG
|0 I:(DE-Juel1)IBG-3-20101118
|x 0
970 _ _ |a VDB:(DE-Juel1)137332
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21