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[1] Bayesian model averaging (BMA) is a standard method for combining predictive
distributions from different models. In recent years, this method has enjoyed widespread
application and use in many fields of study to improve the spread-skill relationship of
forecast ensembles. The BMA predictive probability density function (pdf) of any quantity
of interest is a weighted average of pdfs centered around the individual (possibly
bias-corrected) forecasts, where the weights are equal to posterior probabilities of the
models generating the forecasts, and reflect the individual models skill over a training
(calibration) period. The original BMA approach presented by Raftery et al. (2005) assumes
that the conditional pdf of each individual model is adequately described with a rather
standard Gaussian or Gamma statistical distribution, possibly with a heteroscedastic
variance. Here we analyze the advantages of using BMA with a flexible representation of
the conditional pdf. A joint particle filtering and Gaussian mixture modeling framework is
presented to derive analytically, as closely and consistently as possible, the evolving
forecast density (conditional pdf) of each constituent ensemble member. The median
forecasts and evolving conditional pdfs of the constituent models are subsequently
combined using BMA to derive one overall predictive distribution. This paper introduces
the theory and concepts of this new ensemble postprocessing method, and demonstrates its
usefulness and applicability by numerical simulation of the rainfall-runoff transformation
using discharge data from three different catchments in the contiguous United States. The
revised BMA method receives significantly lower-prediction errors than the original default
BMA method (due to filtering) with predictive uncertainty intervals that are substantially
smaller but still statistically coherent (due to the use of a time-variant conditional pdf).
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1. Introduction

[2] During the last decade, multimodel ensemble predic-
tion systems have become the basis for probabilistic
weather and climate forecasts at many operational centers
throughout the world [Molteni et al., 1996; Grimitt and
Mass, 2002 ; Barnston et al., 2003; Palmer et al., 2004].
Multimodel ensemble predictions aim to capture several
sources of uncertainty in numerical weather forecasts, includ-
ing uncertainty about the initial conditions, lateral boundary
conditions, and model physics, and have convincingly
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demonstrated improvements to numerical weather and cli-
mate forecasts and the production of more skillful estimates
of forecast probability density functions (pdf) [Krishnamurti
et al., 1999; Rajagopalan et al., 2002 ; Doblas-Reyes et al.,
2005; Gneiting et al., 2005; Min and Hense, 2006, among
others]. However, because the current generation of ensem-
ble systems do not explicitly account for all sources of fore-
cast uncertainty, some form of postprocessing is necessary to
provide predictive ensemble pdfs that are meaningful, and
can be used to provide accurate forecasts [Hamill and
Colucci, 1997; Richardson, 2001; Raftery et al., 2005;
Gneiting et al., 2005].

[3] Ensemble Bayesian model averaging (BMA) has
been proposed by Raftery et al. [2005] as a formal statisti-
cal method for the postprocessing of forecast ensembles.
Our concern is to find the predictive probability function
p(Yulfins ---.fkn) of some quantity of interest Y, =

Vi;t=1,...,n}, which in our case is streamflow, but
could also be temperature or sea level pressure as in the
work of Raftery et al. [2005]. If {fi;, ... ,fk:} denotes an
ensemble of =1, ... n individual predictions obtained
from K different models, then BMA approximates the
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predictive probability density function as a weighted aver-
age of the conditional pdfs, gx(Y,|fi) of the individual pre-
dictors of the ensemble, or in mathematical notation

K
p(?nlﬁn, ""fKn) :Zwkgk(?nlﬁm)' (1)
k=1

The weights are derived from a training period, and reflect
the forecasting skill of each individual model over a train-
ing period. To ensure that p(3|fi;, -..,fk:) represents a
proper distribution, the BMA weights are restricted to the
simplex, AKX~ = {w|w,- >0,i=1,...,K} and assumed

to add up to 1, Z wy = 1. Note that this assumption has

been relaxed by Vrugt and Robinson [2007] and Diks and
Vrugt [2010].

[4] The original BMA method described by Raftery
et al. [2005] assumes that the conditional pdf, g, (-) of the
different ensemble members can be approximated by a nor-
mal distribution centered at a linear function of the original
forecast, ay + byfy; and standard deviation o, that essen-
tially conveys the predictive uncertainty of each individual
forecast

J~/t[fkr NN(ak +bkfkr702)- 2
The values for a; and by are bias-correction terms that are
derived by simple linear regression of Y,, on f;,, for each of
the K ensemble members. This (global) forecast correction
removes long-term prediction bias, and is necessary to
receive adequate performance. The BMA predictive mean
at any given time ¢ can be computed as

K
Eilfiss oS =Y wilax + bifia), )
k=1

which is a deterministic forecast whose predictive perform-
ance can be compared with the individual forecasts in the
ensemble, or with the ensemble mean. The variance of this
prediction, var[j|fi;, ..., fk/], is derived from

K K
varliilfir, - ofid = D <(ak +bifie) = Y wilar+ bzfl))2 +o’
k=1 =1
“)

This prediction uncertainty is made up of two separate terms,
the first representing the ensemble spread, and the second
representing the within-ensemble forecast variance.

[s] The developments considered thus far have assumed
that each ensemble member has a similar variance, irre-
spective of forecast skill. This seems rather difficult to jus-
tify in practice. An alternative, and perhaps more appealing
approach, would therefore be to vary o? among the differ-
ent members of the ensemble. This requires some minor
modifications to the BMA methodology, the most impor-
tant of which is that the last term on the right-hand side of

K
equation (4), needs to be replaced with > wyo7. We will
k=1
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later show that using this method has only a minor effect
on the BMA results.

[6] The assumption of a Gaussian conditional distribu-
tion of the individual ensemble members works well for
variables whose conditional distribution is well approxi-
mated with a normal pdf. Examples of this include varia-
bles such as temperature and sea level pressure considered
by Raftery et al. [2005]. Yet, this approach seems inappro-
priate for other variables such as wind speed and discharge,
which are naturally bounded by zero. Indeed, this has
inspired Vrugt and Robinson [2007] and Sloughter et al.
[2010] to consider alternative formulations for gi(-), but
their Gamma pdf only marginally improved the results.

[7] We hypothesize that further improvements to the
BMA method can be made if we relax the assumption of a
preconceived and time-invariant form of gi(-) considered
hitherto in favor of a flexible, time-varying description of
the conditional pdf. Arguably, this should further enhance
the BMA results. This paper introduces the theory and
concepts of this alternative BMA method, and demon-
strates its usefulness and applicability by numerical simu-
lation of the rainfall-runoff transformation using discharge
data from three different catchments in the contiguous
United States.

[8] The remainder of this paper is organized as follows:
In section 2, we introduce the underlying theory and con-
cepts of our approach. This is followed in section 3 with a
detailed description of the numerical experiments, calibra-
tion data, and hydrologic model. In section 4, we compare
the results of the original and proposed BMA method. Here
we are especially concerned with forecast skill, and the av-
erage spread and statistical coherency of the 95% prediction
uncertainty intervals. Finally, a summary with conclusions
is presented in section 5.

2. Bayesian Model Averaging
2.1.

[o9] The standard BMA approach assumes that the condi-
tional pdf, gi(-) of each ensemble member, k =1, ..., K is
time (space)-invariant, and adequately described with a
normal distribution, gx(-) ~ N(-). The values of wy,
k=1,...,K and ¢° can then be derived by maximization
of the following log-likelihood function, £(-)

Normal Conditional Distribution

E(wh ,ak‘f'bkamYn)

n K
=3 tog (3wl + b)),
t=1 k=1

where n signifies the total number of measurements in the
training data set. In the absence of a closed-form analyti-
cal solution that conveniently maximizes this equation,
we resort to an iterative solution of wy, k=1, ..., K; and
o? using a Markov chain Monte Carlo (MCMC) simula-
tion with the DiffeRential Evolution Adaptive Metropolis
(DREAM) algorithm [Vrugt et al., 2008b, 2009]. Explicit
details of this approach within the context of BMA can be
found in the work of Vrugt et al. [2008a] using numerical
experiments with multimodel ensembles of surface tem-
perature, sea level pressure, and streamflow forecasts.
Note that equation (5) is easily extended to accommodate

7WKaO-2‘a1 +bmn7 s
(5)

20f12



W05520

a different variance, oy, k = {1, ...,K} for each of the
different individual predictors.

2.2. Flexible, Time-Varying Conditional Distribution

[10] The assumption of a time-invariant normal distribu-
tion of the conditional distribution, gi(-) of the different en-
semble members is statistically convenient, but often not
borne out of the actual predictive uncertainty of the individ-
ual forecasts. The variance of this prediction uncertainty is
typically larger, sometimes dramatically, than the cali-
brated BMA variance, o° derived from equation (5). A sec-
ond and, from the view of this paper, perhaps more
important problem is that the actual prediction uncertainty
of each ensemble member typically varies dynamically
from one time step to the next, and most often deviates con-
siderably from a normal distribution. We therefore posit
that considerable improvements to the BMA method can be
made if we allow the functional shape and size of gi(-) to
vary dynamically from observation to observation.

[11] One possible refinement of the BMA method intro-
duced by Vrugt and Robinson [2007] is to allow for hetero-
scedasticity of the variance of gi(-) using a simple linear
dependency between the BMA variance, o7 and the actual bi-
ased-corrected forecast of each individual ensemble member

o7, = crlar + bifi), (6)

where the parameter ¢, signifies the slope of this relation-
ship. This approach does not require a direct estimation of
0%. Instead, the BMA variance of each ensemble member is
estimated indirectly from the calibration of c;;k =1, ..., K
using a MCMC simulation with DREAM. Simulation
experiments presented by Vrugt and Robinson [2007] using
daily discharge data demonstrated that a heteroscedastic
BMA error variance not only reduced the 1-d-ahead fore-
cast error of the BMA mean, but also increased the sharp-
ness of the 95% prediction uncertainty intervals. Yet, the
conditional pdf, gi(-) (now time-variant due to its depend-
ence on fy,) is still assumed to be adequately described with
a normal distribution. To relax this assumption, we follow
a recommendation made in our previous work [Vrugt and
Robinson, 2007] and derive gj(-) using particle filtering
and Gaussian mixture modeling. We summarize this
approach in sections 2.2.1 and 2.2.2.

2.2.1. Particle Filtering Using Particle-DREAM

[12] If we assume that the K forecasts of the ensemble are
generated with a dynamical model, then we can derive
gi(*);t =1, ..., n directly using particle filtering (for fur-
ther illustration, see also the tutorials by A. Doucet and
A. M. Johansen (A tutorial on particle filtering and smooth-
ing: Fifteen years later, 2008, available at http://www.cs.
ubc.ca/~arnaud/doucet_johansen_tutorialPF.pdf) and appli-
cations in an environmental and hydrological context by, e.
g., Moradkhani et al. [2005]; van Leeuwen [2009]; Rings
et al. [2010]; Vrugt et al. [2012]). To help explain this pro-
cedure, lets write the underlying (nonlinear) model in a
state-space formulation

Xip1 = D(x,0,0) + ¢,y g, @

where ®(-) is the (nonlinear) model operator expressing the
state transition in response to forcing data u,, model param-
eters, 0 and state variables, x;. In the remainder of this
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paper, we assume that 6 is fixed and consists of d parameter
values, @ € R? and that the state space {x;t=1,...,n}is
of fixed dimension 2, x, € R. The variable q, € R repre-
sents errors in the model formulation, which is typically
ignored in classical model calibration studies.

[13] The measurement operator, A(-), defines the obser-
vation process and projects the model states, x,,; to the
model output, f;,1,

Jir1 = h(Xip1,0) + v, (3)

where v, € R! denotes the measurement error, Vv; ~
N(0,0,), and any additional measurement variables are
stored in ¢.

[14] If we assume that the prior state pdf p(xo) is avail-
able, then we can use the Chapman-Kolmogorov equation
[Jazwinski, 1970] to derive the evolving state distribution,
p(x i - Fi1) at time

P, e i) = / PO )P (Kt 1, - o)X,
Xi—1
©)

where p(x|x,—;) denotes the time evolution of the model
states computed using the nonlinear model operator of
equation (7). From this forecast density we can simply
derive p(f;|y1, ...,):—1) using the measurement operator
h(-). This is the distribution we are actually interested in,
more of which will be discussed later.

[15] After this prediction step, the observation j;
becomes available, and the forecast density can be updated
via Bayes rule:

)7r) :p(jjf'Xf)p(beN/l? "'aj/tfl)
’ p(yt‘j}la"wj}tfl)

p(x|p1, ... (10)

This analysis density is conditioned on the current observa-
tion, and hence differs from the original forecast density.
The first term in the numerator, p(y;|x!) measures how well
x; predicts the next observation y;:

1
_70-j2(h(xh¢) _j}f)z )

pulx) = 2% (11)

1
\/2mo? exp {

where /() is the measurement operator of equation (8).
The normalizing constant in the denominator of equation
(10) follows from,

PG, - Fer) = / PGP - F )i (12)

If we substitute equations (9) and (12) in equation (10) we
derive the following expression for the new posterior,
p(X|¥1, ..., ;) after assimilating observation j;:

P(Xt|)~’l» 7)’}I) =

pilx,) / Px )P (it [ - T )

Xi—1

(13)

J@Glx) [ Pl plxoib g Ddx

Xi—1
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[16] A key task that remains is to implement equations
(9)-(12) on a digital computer. If the functions ®(-) and
h(-) are linear, and q, and v, are Gaussian, the Kalman filter
[Kalman, 1960] finds the exact filtering distribution. For
nonlinear and non-Gaussian problems, the multidimen-
sional integration in the denominator of equation (13) can-
not be computed analytically, rendering an exact solution
of p(x/|1, - ..,J) impossible. For such cases, the extended
Kalman filter (EKF) can be used, but this approach is quite
unstable if the model operator is strongly nonlinear [Even-
sen, 1994 ; Miller et al., 1994].

[17] We therefore resort to a Monte Carlo simulation,
and approximate the evolving state distribution using an
ensemble of different trajectories. The idea is to represent
p(x|1, .. .,J) in equation (13) by a set of P different tra-
jectories, also called particles. Many contributions to the
statistical and modeling literature have demonstrated
unequivocally that particle filters are prone to sample
degeneracy in which an increasing number of particles are
exploring unproductive parts of the state space and
assigned a negligible (zero) weight. A recent paper by
Vrugt et al. [2012] presented the theory and simulation
results of an alternative Bayesian filter that maintains
adequate particle diversity. This Particle-DREAM filter is
inspired by recent developments in particle Markov chain
Monte Carlo (MCMC) sampling [Andrieu et al., 2010] and
combines the strengths of sequential Monte Carlo sampling
and MCMC simulation with DREAM [Vrugt et al., 2008b,
2009] to continuously relinquish bad trajectories and avoid
sample impoverishment. Numerical experiments using the
Lorenz attractor, the Lorenz96 model, and a rainfall-runoff
model have shown that Particle-DREAM requires relatively
few particles to work well in practice and provides impor-
tant insights into the information content of the calibration
data and nonstationarity of model parameters.

[18] The underlying premise of this paper is that the fore-
cast density, p(fi|71, - - - ,s—1) of the k-th ensemble member
derived with Particle-DREAM would be a desirable choice
for g (-) in the BMA methodology. This forecast distribu-
tion not only appropriately summarizes predictive uncer-
tainty, but also removes the need to a priori specify the
functional shape of gi(-). Indeed, p(fi|1, ..., 1) might
be multivariate, non-Gaussian, and multimodal, and hence
deviate considerably from any traditional distribution cur-
rently used in BMA. Yet, if we adopt this approach and use
the forecast density as an approximation to g(-), then one

214 Days

215 Days

o
=
N
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hurdle remains, and that is that we only have (discrete) sam-
ples of gk (). Without a continuous distribution it becomes
rather cumbersome to derive the associated BMA weights of
the individual ensemble members. We therefore postprocess
the n forecast densities of each k-th ensemble member,
P, - ¥em1);t =1, ..., n by fitting a different Gaus-
sian mixture to each of the individual (marginal) histograms.
Section 2.2.2 explains this approach in more detail.

2.2.2. Gaussian Mixture Modeling to Provide the
Distributional Form of g,(-)

[19] The cross-entropy (CE) algorithm of Rubinstein and
Kroese [2004] is used to create a mixture of Gaussian
distributions [Botev and Kroese, 2004] for each ensemble
member and each time step. We start with a single (J = 1)
normal distribution, and estimate the mean p™* and stand-
ard deviation o™ of this distribution from the P = 250 dis-
crete samples created with Particle-DREAM using a
standard likelihood function. Then we sequentially add
another component (normal distribution), and (re-)estimate
the mean and standard deviation of each individual Gaus-
sian distribution. We continue this process until the relative
improvement in fit falls below 1%. We denote this final
mixture distribution of ensemble member £ at time ¢ with

J . .

T =y PN (u%",a}:}}x), where py,; denotes the normal-
J=1 ' '

ized posterior probability (or weight) of the j-th distribution

J

within the mixture, > py; = 1. Note that the total number
j=1

of constituent Gaussian distributions, J, can vary dynami-

cally with time and also between different ensemble

members.

[20] To illustrate our joint particle filtering and Gaussian
mixture modeling framework, please consider Figure 1 that
presents histograms of the Particle-DREAM-derived fore-
cast density at days 214, 215, 323, and 403 for one of the
models considered in our ensemble. The quantity of interest
is river discharge, details of which will be presented in sec-
tion 3. In Figure 1, the red lines represent the corresponding
fit of the mixture distribution. Note that the forecast density
not only varies dynamically between the different days, but
also deviates considerably from a normal distribution. This
provides evidence for our claim that a time-invariant Gaus-
sian conditional pdf seems inappropriate to fully capture
the discharge dynamics. A better compliance of the BMA

323 Days 403 Days
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=
©
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1
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Figure 1.
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Leaf River: Histograms of the predictive densities derived with Particle-DREAM at days

214, 215, 323, and 403 of the training data period. The fit of the Gaussian mixture distribution is illus-

trated with the solid red line.
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Figure 2. Leaf River: The five deterministic model forecasts (color coded) for a selected time period
of the training period. The different lines represent the individual model forecasts and the black dots

refer to the observed streamflow values.

model and actual data should be achievable if we use a
flexible, time variable, description of g, (+).

[21] Now that we have the mixture distribution of each
individual forecast at each time, we can derive the associ-
ated BMA weights of each individual ensemble member.
We estimate wy; k=1, ..., K by maximizing the follow-
ing log likelihood function, #(+),

Lwy, ... wk) = i:log (Z[Mﬂ%])

k=1
(14
K

n J
= Zlog <Z (WkZ[pkU'N(Mg;xv 02‘2")}»,
=1 J=1

k=1

using MCMC simulation with DREAM.

3. Model, Historical Data, and Ensemble
Generation

[22] We illustrate the usefulness and applicability of the
joint particle filtering, Gaussian mixture modeling, and
BMA framework, by application to rainfall-discharge mod-
eling using historical data from the Leaf River, French
Broad, and Guadalupe catchments in the United States.
Five years of daily discharge data from each of the three
catchments were used for BMA training, followed by a
similar length data set to test the performance of the origi-
nal and revised BMA method during an independent evalu-
ation period. The watershed modeling toolbox of Schoups
et al. [2010] was used to create a single watershed model,
®(-) that describes the precipitation-discharge transforma-
tion using four state variables for three different fast flow

and one slow flow reservoir. An ensemble of five different
members was created by randomly sampling the eight cali-
bration parameters from their prior distribution. This
approach differs somewhat from previous publications in
that we used a single model for ensemble generation. This
simplifies the analysis somewhat, but is sufficient to illus-
trate the main findings of this paper. Numerical experi-
ments with structurally different watershed models
provided very similar results (not shown herein).

[23] Note also that we purposely use an ensemble of
uncalibrated model predictions. This not only best high-
lights the advantages of the proposed BMA approach, but
also illustrates the gains that can be achieved with imple-
mentation of the theory and concepts presented herein in
operational forecasting systems, many of which work with
parameter-rich and CPU intensive simulation models that
are computationally too demanding to calibrate directly
against available observations. Examples include weather,
hydrogeological, and global-scale hydrologic models. Our
previous work [Vrugt and Robinson, 2007] used a cali-
brated ensemble of eight different watershed models with
thr main conclusion that the default BMA approach cannot
achieve a performance matching that of the ensemble Kal-
man filter.

[24] Before applying the linear bias correction outlined
above, the measured discharge data, Y, = {31, ..., )} and
corresponding  ensemble  forecasts, f = {fi;, ..., fu;
t=1,...,n} of each individual watershed were prepro-
cessed using a Box-Cox power transformation [Box and
Cox, 1964],

by O A—1 :
P = [ ~1]/[)\(GM(Y,,)) ] ifA#0 7 (15)
GM(Y,)log (z,) ifA=0
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where z2€ denotes the transformed observation (model pre-
diction) at time ¢, z; is either the measured discharge y, or
corresponding ensemble forecast fi k= {1,...,K},
GM(Y,) denotes the geometrical mean of the measured
data, and ) signifies a transformation exponent, separately
derived for each individual catchment using a MCMC sim-
ulation with DREAM. The maximum likelihood values of
A varied from 0.075 (Leaf River) to 0.16 (French Broad)
and 0.21 (Guadalupe). This transformation was deemed
necessary to remove heteroscedasticity [Sorooshian and
Dracup, 1980]. The normal quantile transform (NQT) con-
stitutes an alternative approach to enforce the normality of
the data and forecasts [Moran, 1970; Kelly and Krzysztofo-
wicz, 1997; Montanari and Brath, 2004]. Yet this approach
posed some problems with extrapolation beyond the maxi-
mum measured discharge, which was necessary when
calculating the error statistics of the particle filter in the
original streamflow space.

[25] Section 4 discusses the main results of this paper.
We present the results for three different BMA cases, each
using the Box-Cox transformed discharge data. The first
case uses the original transformed and bias-corrected model
forecasts with a normal, time-invariant conditional pdf of
the different ensemble members. This summarizes the
results of the default BMA approach, “BMAp,.” The sec-
ond case, hereafter referred to as “BMApp),” uses the me-
dian filter predictions derived with Particle-DREAM as the
individual BMA forecasts and a normal (time-invariant)
conditional distribution for each of the five different ensem-
ble members. The forecasts of this ensemble are derived
using sequential state updating, and hence in theory should
exhibit a better predictive performance as the original unfil-
tered forecasts. Finally, the last approach, “BMAppn)” is
similar to the “BMApp),” but uses the fitted Gaussian mix-
ture distribution of the forecast density as a conditional
distribution. This results in a time-varying, and free-form
description of gy, (-).

[26] In all of our calculations with Particle-DREAM, the
measurement error, o, was assumed to be 10% of the actual
measured discharge. This value is consistent with expert
knowledge, and consistent with results of a nonparametric
measurement error estimator [Vrugt et al., 2005]. The
model error, q, was assumed to be adequately described
with a normal distribution with error standard deviation of
the states automatically tuned so that the filter receives an
adequate performance. Details of this are beyond the scope
of the current paper, and can be found in the work of Vrugt
et al. [2005].

4. Results and Discussion

[27] To provide insights into the properties of the ensem-
ble, Figure 2 presents the deterministic forecasts of the five
different ensemble members for the Leaf River watershed
for a representative period in 1953. The black dots repre-
sent the measured discharge data and the color-coded lines
denote the corresponding predictions of the five different
watershed model parameterizations. The original model en-
semble does not properly track the observational data, and
shows significant prediction bias. Peak and low flow are
particularly poorly described. Indeed, a linear bias-correc-
tion (after the Box-Cox transformation) is warranted to
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improve the predictive performance of each of the ensem-
ble members.

[28] The respective plots for the French Broad and Gua-
dalupe watersheds are shown in Figures 3 and 4. The model
predictions are more realistic for these two rivers, and the
ensemble spread tends to better capture the measured dis-
charge dynamics. Note that the Guadalupe basin is rather
dry, and characterized with a few heavy precipitation and
flash flooding events that are difficult to model in practice.
Direct runoff (overland flow) is only poorly described in
the watershed model.

[29] We now illustrate the results of the particle filter in
the original discharge space. The results of this are pre-
sented in Figures 5 (Leaf River), 6 (French Broad), and 7
(Guadalupe). Each individual panel separately presents the
results of each individual ensemble member. The impact of
sequential state updating becomes immediately apparent.
The median predictions of the forecast densities derived
with Particle-DREAM (color-coded lines) track much bet-
ter the observed discharge (solid dots) for each individual
watershed, with 95% prediction uncertainty intervals
(color-coded regions) that appear, perhaps, rather large but
appropriately encapsulate the measured data. Even the
flash-flooding events in the Guadalupe basin are now rea-
sonably predicted. The ability of the particle filter to con-
tinuously update the state variables, allows for a much
better compliance between the measured and predicted dis-
charge values, even with parameter values that are ran-
domly sampled from their prior distributions and deemed
inadequate. We conclude that the particle filter is a useful
preprocessing step prior to BMA. Yet this requires signifi-
cant computational efforts, and perhaps is not easy to
implement for some models, particularly those that resolve
spatially distributed processes, and are hence computation-
ally demanding.

[30] Tables 1, 2, and 3 summarize the BMA weights for
each of the five ensemble members for the three different
watersheds considered herein. The column headings have
been defined previously. The heading BMAp, lists the
results of the default BMA approach using the original
Box-Cox transformed and bias-corrected discharge fore-
casts with a normal conditional distribution. The other two
columns, BMA«pry) and BMA ppy summarize the BMA
results with median forecasts of the particle filter, but differ
in that BMA pF) uses a normal (time-invariant) conditional
distribution and BMA ppyy uses the Gaussian mixture dis-
tribution of the forecast density as approximation to gi(-).

[31] The original BMA results (BMAp)) tends to place
the weights on just two or three members of the ensemble.
The other forecasts of the ensemble receive a nearly
zero weight and do not play any role in the BMA model.
This is different when the forecasts are derived from the
particle filter. The weights are more homogeneously dis-
tributed among the different ensemble members (except
for the Leaf River), simply because the individual fore-
casts closely track the observed discharge data and exhibit
a similar predictive performance. This is perhaps a desira-
ble finding, as perhaps each constituent member brings
along additional information and detail about the rainfall-
runoff process.

[32] The results presented thus far do not convey any
information about the predictive performance of the
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Figure 3. French Broad: The five deterministic model forecasts (color coded) for a selected time pe-

riod of the training period. The different lines represent the individual model forecasts and the black dots
refer to the observed streamflow values.

c 0
=
®_ 20
£5
Q
S E 40
CE
a - 60 I L I I L I L
3_ u
¥
[
E s h
; - u
2 \
fram) \
S
@©
(V)
iS5
9]

200 250 300
Julian Days since WY 1948

Figure 4. Guadalupe: The five deterministic model forecasts (color coded) for a selected time period
of the training period. The different lines represent the individual model forecasts and the black dots
refer to the observed streamflow values.
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Figure 5. Leaf River: The effect of particle filtering on the discharge forecasts. Each horizontal panel

plots the results for a different ensemble member; the + (plus) symbols represent the observed discharge
data, the solid line the median Particle-DREAM prediction, and the green, blue, orange, purple, and yel-
low regions denote the corresponding 95% uncertainty ranges.

different ensemble members and BMA models. Tables 4
(Leaf River), 5 (French Broad), and 6 (Guadalupe) summa-
rize for each different watershed the average 1-d-ahead
forecast error of the different ensemble members and dif-
ferent BMA approaches for the calibration and evaluation
period. We also list the average spread of the 95% predic-
tion uncertainly intervals, and the percentage of discharge
observations that are contained within this interval. The
most important findings can be summarized as follows.

[33] In the first place, notice that particle filtering has
substantially improved the predictive performance of each
individual ensemble member. Sequential state updating
with Particle-DREAM substantially reduces (with a few
exceptions) the average prediction error (root-mean-square
error [RMSE]) of each forecast (1—5) of the ensemble.
This improvement is most substantial for the Leaf River
and French Broad watersheds, and is observed during both
the calibration and evaluation period. Note that BMA pr)

and BMA pry differ only in their conditional distribution
used to assess the prediction uncertainty of the BMA
model, and hence list a similar prediction error of the fore-
casts of the ensemble. A lower RMSE for the Guadalupe
Basin during evaluation is connected to the fact that the
RMSE is very sensitive to the fitting of rare rainfall events,
so that a lower RMSE can just be related to less-extreme
streamflow peaks during the evaluation period.

[34] A second finding is that the forecast error of the
BMA model has significantly decreased with particle filter-
ing of the original forecasts. The RMSE of BMA pp, and
BMA ppwy is significantly lower than the RMSE of default
BMA, BMAp, using the unfiltered forecasts. This is per-
haps not surprising and the immediate effect of the state-
updating step in BMApg) and BMA ppyp). Note that the
RMSE of BMA ppyy is somewhat lower than the RMSE of
BMA ppy; but both prediction errors are similar to the
RMSE values of the individual constituent ensemble
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Figure 6. French Broad: The effect of particle filtering on the discharge forecasts. Each horizontal
panel plots the results for a different ensemble member; the + (plus) symbols represent the observed dis-
charge data, the solid line the median Particle-DREAM prediction, and the green, blue, orange, purple,
and yellow regions denote the corresponding 95% uncertainty ranges.

members. Thus, postprocessing of the filtered forecast en-
semble with BMA does not further reduce the average pre-
diction error, irrespective of whether we are using a normal
or time-varying and flexible conditional distribution.

[35] A third finding is that the average spread of the
95% prediction uncertainty ranges of the BMA model is
substantially reduced (in most cases) when using the fil-
tered forecasts. The sharpness of the predictive pdf has
substantially increased with BMA pr) and BMA (ppny. But
BMA ppy somewhat underestimates the actual prediction
uncertainty, as the intervals do not contain the desired
95% of the discharge data. The overall best results are
obtained with BMA ppy. This method not only exhibits
the best predictive performance from all three BMA
approaches, but also adequately captures the expected
percentage of observations at the 95% prediction uncer-
tainty interval. We thus conclude that a flexible, time-
varying conditional pdf of each of the model forecasts in

the BMA method has desirable advantages. It is impor-
tant to realize, however, that this approach can only be
applied sequentially, and hence each time requires actual
data of the quantity of interest to forecast into the future.
The default BMA method on the contrary, receives rather
poor performance, but can be used without hesitation
once the BMA weights and variances have been deter-
mined from a training period. This has several practical
advantages.

[36] Finally, we test whether the performance of BMA p,
and BMApp) could be further improved if we allow for
individual variances of the normal conditional pdf for each
ensemble member. The results are presented in Table 7.
We limit our results to the Leaf River watershed as similar
findings were observed for the other two basins. The
weights of the different forecasts not only differ from their
current values if we use individual variances for each of the
conditional distributions of the ensemble, but the weights
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Figure 7. Guadalupe: The effect of particle filtering on the discharge forecasts. Each horizontal panel
plots the results for a different ensemble member; the + (plus) symbols represent the observed discharge
data, the solid line the median Particle-DREAM prediction, and the green, blue, orange, purple, and yel-
low regions denote the corresponding 95% uncertainty ranges.

are also distributed more evenly among the different ensem-
ble members. This is most apparent for BMApg). Yet this
finding does not appear to really affect the overall predic-
tive performance of BMA ) and BMA pg). An individual

Table 1. Leaf River: BMA Model Weights Derived for the Cali-
bration Data Period for Each of the Three Different Cases
Considered

variance for each constituent ensemble member in BMA
and BMA ppy receives very similar discharge prediction
errors and 95% uncertainty ranges as those derived pre-
viously with both methods using a single variance. This

Table 2. French Broad: BMA Model Weights Derived for the
Calibration Data Period for Each of the Three Different Cases
Considered

BMA Weight BMA Weight
Model BMA(D) BMA( PF) BMA(pFM) Model BMA(D) BMA( PF) BMA(pFM)
1 0.5189 0.4642 0.5335 1 0.1728 0.1976 0.1321
2 0.0001 0.0003 0.0002 2 0.3471 0.2040 0.1829
3 0.0037 0.4722 0.4643 3 0.4794 0.1950 0.0942
4 0.4770 0.0632 0.0015 4 0.0005 0.3779 0.5808
5 0.0004 0.0000 0.0004 5 0.0002 0.0255 0.0100
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Table 3. Guadalupe: BMA Model Weights Derived for the Cali-
bration Data Period for Each of the Three Different Cases
Considered
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Table 7. Leaf River: Comparison of BMA ) and BMA pr, With
Single or Multiple Difference Variances? Unclear of the Condi-
tional Distribution of the Individual Ensemble Members

BMA Weight
Model BMAp, BMA pr, BMA pry)
1 0.3582 0.1612 0.0444
2 0.0001 0.0645 0.1576
3 0.0027 0.6921 0.0162
4 0.0004 0.0152 0.5744
5 0.6385 0.0670 0.2074

Table 4. Leaf River: Summary Statistics of the Performance of
the Individual Ensemble Members and BMA Model for the Differ-
ent Cases Considered®

Calibration Evaluation
Metric BMA 5y BMA(pr) BMA ppvy BMA(p) BMA (pry BMA (ppw)
RMSE 1 39.48 20.55 54.26 33.19
RMSE 2 44.39 23.09 60.02 37.53
RMSE 3 47.95 25.71 72.99 43.84
RMSE 4 41.98 20.72 55.29 34.06
RMSE 5 45.45 21.06 61.14 35.57
BMA RMSE 38.69  23.87 23.75 62.20  40.58 40.22
Spread 40.34 1746 30.66 56.67  28.75 50.78
% contained  93.4 88.8 96.3 89.5 86.6 95.7

“Data is for the 5-yr calibration and evaluation period. The RMSE sum-
marizes the average one-day-ahead discharge prediction error, and the
spread and percent of observations contained refer to the average width of
the 95% uncertainty ranges, and the percentage of discharge observations
contained in this interval.

Table 5. French Broad: Summary Results of the Ensemble and
BMA Models for the Calibration and Evaluation Period®

Calibration Evaluation
Metric  BMApy BMApr) BMAppvy BMA ) BMApr, BMA pry)
RMSE 1 1.77 1.04 1.80 0.92
RMSE 2 1.78 0.64 1.90 0.59
RMSE 3 1.65 1.08 1.68 1.07
RMSE 4 1.94 0.62 2.01 0.56
RMSE 5 1.67 0.93 1.77 0.92
BMA RMSE  1.07 0.64 0.62 0.97 0.55 0.53
Spread 2.68 0.98 1.57 2.50 0.78 1.24
% contained  93.5 88.7 95.3 85.6 87.3 95.6

#For a description of each metric, please refer to Table 4.

Table 6. Guadalupe: Summary Results of the Ensemble and
BMA Models for the Calibration and Evaluation Period®

Calibration Evaluation
Metric BMA(D) BMA(pF) BMA(pFM) BMA(D) BMA(pF) BMA(pFM)
RMSE 1 0.80 0.56 0.50 0.34
RMSE 2 0.82 0.77 0.44 0.38
RMSE 3 0.82 0.80 0.46 0.39
RMSE 4 0.86 0.79 0.49 0.37
RMSE 5 0.81 0.75 0.45 0.36
BMA RMSE 0.79 0.80 0.67 0.42 0.37 0.34
Spread 0.20 0.08 0.09 0.19 0.08 0.08
% contained  94.4 95.3 95.7 78.1 84.0 85.8

#For a description of each metric, please refer to Table 4.

BMA weight
BMA p, BMA )

Model/Metric Single Individual Single Individual
1 0.5189 0.7966 0.4642 0.3739
2 0.0001 0.0003 0.0003 0.0000
3 0.0037 0.0173 0.4722 0.4201
4 0.4770 0.1857 0.0632 0.0547
5 0.0004 0.0002 0.0000 0.1513
BMA RMSE 38.69 39.07 23.87 24.05
Spread 40.34 37.44 17.46 15.18
% contained 93.4 93.4 88.8 84.9

conclusion is perhaps not surprising, and has been reported
earlier for the default BMA approach [Raftery et al., 2005;
Vrugt and Robinson, 2007]. This concludes our numerical
experiments.

5. Conclusions

[37] Bayesian model averaging has found widespread
application and use for postprocessing of forecast ensem-
bles of environmental system models. The standard BMA
method assumes a normal, time-invariant distribution of
gx(+), the conditional pdf of the individual forecasts of the
ensemble. In this paper, we relax this assumption and have
introduced theory and concepts of a joint particle filtering
and Gaussian mixture modeling framework to provide a
flexible, time-variable description of gy(-). Simulation
experiments using observed discharge data from the Leaf
River, French Broad, and Guadalupe watersheds in the
contiguous United States have demonstrated that this re-
vised BMA method exhibits better predictive performance
than the original default BMA method, with a spread of the
95% prediction uncertainty intervals that appropriately
captures the desired percentage of observations. The
Particle-DREAM and DREAM MCMC simulation codes
used herein can be obtained from the second author upon
request.
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