001     21348
005     20200702121620.0
024 7 _ |a 10.1029/2011WR010462
|2 DOI
024 7 _ |a WOS:000302531800001
|2 WOS
024 7 _ |a 2128/20538
|2 Handle
037 _ _ |a PreJuSER-21348
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Limnology
084 _ _ |2 WoS
|a Water Resources
100 1 _ |0 P:(DE-HGF)0
|a Schoniger, A.
|b 0
245 _ _ |a Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography
260 _ _ |a Washington, DC
|b AGU
|c 2012
300 _ _ |a W04502
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5958
|a Water Resources Research
|v 48
|x 0043-1397
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) and within the International Research Training Group "Nonlinearities and upscaling in porous media" (NUPUS, IRTG 1398) at the University of Stuttgart.
520 _ _ |a Ensemble Kalman filters (EnKFs) are a successful tool for estimating state variables in atmospheric and oceanic sciences. Recent research has prepared the EnKF for parameter estimation in groundwater applications. EnKFs are optimal in the sense of Bayesian updating only if all involved variables are multivariate Gaussian. Subsurface flow and transport state variables, however, generally do not show Gaussian dependence on hydraulic log conductivity and among each other, even if log conductivity is multi-Gaussian. To improve EnKFs in this context, we apply nonlinear, monotonic transformations to the observed states, rendering them Gaussian (Gaussian anamorphosis, GA). Similar ideas have recently been presented by Beal et al. (2010) in the context of state estimation. Our work transfers and adapts this methodology to parameter estimation. Additionally, we address the treatment of measurement errors in the transformation and provide several multivariate analysis tools to evaluate the expected usefulness of GA beforehand. For illustration, we present a first-time application of an EnKF to parameter estimation from 3-D hydraulic tomography in multi-Gaussian log conductivity fields. Results show that (1) GA achieves an implicit pseudolinearization of drawdown data as a function of log conductivity and (2) this makes both parameter identification and prediction of flow and transport more accurate. Combining EnKFs with GA yields a computationally efficient tool for nonlinear inversion of data with improved accuracy. This is an attractive benefit, given that linearization-free methods such as particle filters are computationally extremely demanding.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Nowak, W.
|b 1
700 1 _ |0 P:(DE-Juel1)138662
|a Hendricks-Franssen, H.J.
|b 2
|u FZJ
773 _ _ |0 PERI:(DE-600)2029553-4
|a 10.1029/2011WR010462
|g Vol. 48, p. W04502
|p W04502
|q 48|t Water resources research
|v 48
|x 0043-1397
|y 2012
856 7 _ |u http://dx.doi.org/10.1029/2011WR010462
856 4 _ |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:21348
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK407
|1 G:(DE-HGF)POF2-240
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-259H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a Peer review
|0 StatID:(DE-HGF)0030
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|g IBG
|k IBG-3
|l Agrosphäre
|x 0
970 _ _ |a VDB:(DE-Juel1)137333
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21