| Home > Publications database > Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography > print |
| 001 | 21348 | ||
| 005 | 20200702121620.0 | ||
| 024 | 7 | _ | |a 10.1029/2011WR010462 |2 DOI |
| 024 | 7 | _ | |a WOS:000302531800001 |2 WOS |
| 024 | 7 | _ | |a 2128/20538 |2 Handle |
| 037 | _ | _ | |a PreJuSER-21348 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 550 |
| 084 | _ | _ | |2 WoS |a Environmental Sciences |
| 084 | _ | _ | |2 WoS |a Limnology |
| 084 | _ | _ | |2 WoS |a Water Resources |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Schoniger, A. |b 0 |
| 245 | _ | _ | |a Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography |
| 260 | _ | _ | |a Washington, DC |b AGU |c 2012 |
| 300 | _ | _ | |a W04502 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 5958 |a Water Resources Research |v 48 |x 0043-1397 |
| 500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
| 500 | _ | _ | |a The authors would like to thank the German Research Foundation (DFG) for financial support of the project within the Cluster of Excellence in Simulation Technology (EXC 310/1) and within the International Research Training Group "Nonlinearities and upscaling in porous media" (NUPUS, IRTG 1398) at the University of Stuttgart. |
| 520 | _ | _ | |a Ensemble Kalman filters (EnKFs) are a successful tool for estimating state variables in atmospheric and oceanic sciences. Recent research has prepared the EnKF for parameter estimation in groundwater applications. EnKFs are optimal in the sense of Bayesian updating only if all involved variables are multivariate Gaussian. Subsurface flow and transport state variables, however, generally do not show Gaussian dependence on hydraulic log conductivity and among each other, even if log conductivity is multi-Gaussian. To improve EnKFs in this context, we apply nonlinear, monotonic transformations to the observed states, rendering them Gaussian (Gaussian anamorphosis, GA). Similar ideas have recently been presented by Beal et al. (2010) in the context of state estimation. Our work transfers and adapts this methodology to parameter estimation. Additionally, we address the treatment of measurement errors in the transformation and provide several multivariate analysis tools to evaluate the expected usefulness of GA beforehand. For illustration, we present a first-time application of an EnKF to parameter estimation from 3-D hydraulic tomography in multi-Gaussian log conductivity fields. Results show that (1) GA achieves an implicit pseudolinearization of drawdown data as a function of log conductivity and (2) this makes both parameter identification and prediction of flow and transport more accurate. Combining EnKFs with GA yields a computationally efficient tool for nonlinear inversion of data with improved accuracy. This is an attractive benefit, given that linearization-free methods such as particle filters are computationally extremely demanding. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK407 |2 G:(DE-HGF) |a Terrestrische Umwelt |c P24 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science |
| 650 | _ | 7 | |2 WoSType |a J |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Nowak, W. |b 1 |
| 700 | 1 | _ | |0 P:(DE-Juel1)138662 |a Hendricks-Franssen, H.J. |b 2 |u FZJ |
| 773 | _ | _ | |0 PERI:(DE-600)2029553-4 |a 10.1029/2011WR010462 |g Vol. 48, p. W04502 |p W04502 |q 48 |v 48 |x 0043-1397 |y 2012 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1029/2011WR010462 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/21348/files/Sch-niger_et_al-2012-Water_Resources_Research.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:21348 |p openaire |p open_access |p driver |p VDB:Earth_Environment |p VDB |p dnbdelivery |
| 913 | 1 | _ | |0 G:(DE-Juel1)FUEK407 |1 G:(DE-HGF)POF2-240 |2 G:(DE-HGF)POF2-200 |a DE-HGF |b Erde und Umwelt |k P24 |l Terrestrische Umwelt |v Terrestrische Umwelt |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Marine, Küsten- und Polare Systeme |l Terrestrische Umwelt |1 G:(DE-HGF)POF3-250 |0 G:(DE-HGF)POF3-259H |2 G:(DE-HGF)POF3-200 |v Addenda |x 0 |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
| 915 | _ | _ | |a Peer review |0 StatID:(DE-HGF)0030 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1020 |2 StatID |b Current Contents - Social and Behavioral Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)IBG-3-20101118 |g IBG |k IBG-3 |l Agrosphäre |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)137333 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)IBG-3-20101118 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|