
Parameter estimation by ensemble Kalman filters with transformed
data: Approach and application to hydraulic tomography

A. Schöniger,1,2 W. Nowak,1 and H.-J. Hendricks Franssen3

Received 24 January 2011; revised 20 February 2012; accepted 24 February 2012; published 3 April 2012.

[1] Ensemble Kalman filters (EnKFs) are a successful tool for estimating state variables in
atmospheric and oceanic sciences. Recent research has prepared the EnKF for parameter
estimation in groundwater applications. EnKFs are optimal in the sense of Bayesian
updating only if all involved variables are multivariate Gaussian. Subsurface flow and
transport state variables, however, generally do not show Gaussian dependence on hydraulic
log conductivity and among each other, even if log conductivity is multi-Gaussian. To
improve EnKFs in this context, we apply nonlinear, monotonic transformations to the
observed states, rendering them Gaussian (Gaussian anamorphosis, GA). Similar ideas have
recently been presented by Béal et al. (2010) in the context of state estimation. Our work
transfers and adapts this methodology to parameter estimation. Additionally, we address the
treatment of measurement errors in the transformation and provide several multivariate
analysis tools to evaluate the expected usefulness of GA beforehand. For illustration, we
present a first-time application of an EnKF to parameter estimation from 3-D hydraulic
tomography in multi-Gaussian log conductivity fields. Results show that (1) GA achieves an
implicit pseudolinearization of drawdown data as a function of log conductivity and (2) this
makes both parameter identification and prediction of flow and transport more accurate.
Combining EnKFs with GA yields a computationally efficient tool for nonlinear inversion
of data with improved accuracy. This is an attractive benefit, given that linearization-free
methods such as particle filters are computationally extremely demanding.
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1. Introduction
1.1. History of Ensemble Kalman Filters

[2] Robust and reliable prognoses of contaminant
spreading in the subsurface require a sound knowledge of
hydraulic parameters (e.g., hydraulic conductivity). Sparse
measurement data often fail to satisfyingly characterize het-
erogeneous aquifers in a deterministic manner [e.g., Rubin,
2003]. Instead, stochastic inverse modeling techniques allow
to assimilate measurement data, estimate parameters and
quantify parameter and prediction uncertainty. Among sev-
eral options for stochastic inverse modeling [e.g., Hendricks
Franssen et al., 2009], the ensemble Kalman filter (EnKF)
was proposed by Evensen [1994] and was later refined by
Burgers et al. [1998]. The EnKF updates predictions of sim-
ulation models when new observations become available. It
is based on an often nonlinear prediction model, a measure-
ment model and an updating scheme based on recursive
application of Bayes rule in a linearized (first and second

statistical moments) context. Only if all probability density
functions involved in the updating step are multi-Gaussian,
the EnKF update will be optimal. An important advantage
of the EnKF over the classical or the extended Kalman Filter
is that the necessary covariances between states at any given
time step are estimated efficiently from a limited ensemble of
stochastic realizations without requiring sensitivity analyses.

[3] Early applications of the EnKF in hydrologic sciences
assimilated remote sensing data for updating (surface) soil
moisture contents [Reichle et al., 2002a, 2002b; Margulis
et al., 2002; Crow and Wood, 2003]. It was found that data
assimilation improved hydrologic predictions [Margulis
et al., 2002] and that the EnKF outperformed the extended
Kalman Filter [Reichle et al., 2002b]. However, Reichle
et al. [2002a] observed that a large number of stochastic
realizations was needed for satisfactory estimates of ensem-
ble variances.

[4] The first applications of EnKFs for flow in porous
media were in petroleum engineering [Naevdal et al., 2003;
Lorentzen et al., 2005; Zafari and Reynolds, 2005; Liu and
Oliver, 2005]. Skjervheim et al. [2007] included 4-D seis-
mic measurements in data assimilation with the EnKF.
Chen and Zhang [2006] introduced the EnKF to subsurface
hydrology, and further applications followed [e.g., Hen-
dricks Franssen and Kinzelbach, 2008; Tong et al., 2010].
Since only the states at the current time step are updated in
the traditional formulation of the EnKF, only few of the
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above studies considered updating model parameters.
Mostly, uncertainty was only considered with respect to the
model forcings, initial conditions and measurements.

[5] Subsurface hydrologic model predictions, however,
are often dominated by parameter uncertainty [e.g., Smith
and Schwartz, 1981]. Therefore, the EnKF was reformu-
lated as an augmented state vector approach and as a dual
state parameter approach to include uncertain parameters
besides the unknown states [e.g., Moradkhani et al.,
2005b; Evensen, 2009]. Vrugt et al. [2005] introduced the
option to combine EnKF with optimization for parameter
inference. Liu et al. [2008] included the calibration of
transport parameters in an EnKF framework. The EnKF
updating does not enforce consistency of the updated states
and model parameters with the governing flow equation.
Therefore, Wen and Chen [2005, 2006, 2007] proposed a
confirming step to ensure the consistency, in their case for
multiphase flow in porous media. Gu and Oliver [2007]
extended this work toward an iterative EnKF which guaran-
tees that physical constraints are met. The groundwater
flow equation is less nonlinear as compared with the multi-
phase flow equation. This is probably the reason why Hen-
dricks Franssen and Kinzelbach [2008] found very similar
results for the traditional EnKF and the iterative EnKF.
Hendricks Franssen and Kinzelbach [2009] compared the
EnKF and Monte Carlo (MC) based inverse modeling with
the sequential self-calibration method in two synthetic
studies. These authors found that, even for a large transmis-
sivity variance, the two methods performed similarly, but
the EnKF needed a factor of 80 less CPU time.

[6] Nowak [2009] reformulated the EnKF such that only
parameters are updated, introducing the need for an iterative
procedure each time new measurement data are assimilated.
This work concluded the evolution of the EnKF from a
method that updates only the states, toward a geostatistical
inversion algorithm that only updates parameters. If only
material parameters are updated, it is assumed that some
other sources of uncertainty (e.g., model forcings) are negli-
gible as compared to material parameter uncertainty. The
approach, however, does not exclude the option to parame-
trize uncertain model forcings and jointly update material
and forcing parameters. The assimilation of observations by
EnKFs in order to update only parameters, not states, will
be referred to as p-space (parameter space) EnKF.

1.2. Data Transformation: Motivation and Approach

[7] An important limitation of the EnKF is that it is opti-
mal only for multi-Gaussian relations among all considered
variables. Non-Gaussianity of priors and/or nonlinear simu-
lation models result in non-Gaussian model states and data.
For subsurface applications, significant non-Gaussianity of
states occurs in case of strong spatial heterogeneity of hy-
draulic conductivity and, in general, for the simulation of
contaminant transport with sharp fronts (e.g., advection
dominated processes). This occurs even if log conductivity
is multi-Gaussian, which is a very frequent assumption in
stochastic hydrogeology. Therefore, it is highly desirable in
subsurface hydrology to find sequential data assimilation
methodologies that are robust against deviations from nor-
mality in the states.

[8] One possible option for making sequential data assim-
ilation more robust against deviations from Gaussianity in

the states is Gaussian anamorphosis (GA) [e.g., Chilès and
Delfiner, 1999]. Non-Gaussian random variables are trans-
formed into Gaussian ones using analytical or numerical
transformations. This procedure has been used in older
studies on disjunctive kriging [e.g., Matheron, 1973;
Rivoirard, 1994], and is referred to as normal score trans-
form in the geostatistical software library GSLIB [Deutsch
and Journel, 1998]. A good overview of such techniques
in petroleum engineering is provided by Aanonsen et al.
[2009], and a specific example is the work by Gu and
Oliver [2006]. Bertino et al. [2003] introduced it in the con-
text of data assimilation by the EnKF. GA is applied on
both the observations and the state space, and the covari-
ance matrices are estimated for the transformed variables.
The normal EnKF scheme is applied on the transformed
variables, and the states are back transformed after the
updating step.

[9] Simon and Bertino [2009] used GA for the chloro-
phyll field in a biogeochemical ocean model. Béal et al.
[2010] found that GA resulted in a substantial improvement
of estimations with a 3-D coupled physical-biogeochemical
ocean model as compared to the classical EnKF. In these
studies, GA was not applied on parameters or in the context
of parameter estimation. We are not aware of the existence
of other works that applied GA in the context of sequential
data assimilation or in hydrologic sciences, except from the
work of Zhou et al. [2011]. In specific, there is no study yet
that analyzed GA of observed state variables in the context
of p-space EnKFs.

[10] Given the fact that the EnKF is an attractive
approach because of its CPU efficiency and its relative
robustness against nonlinearities [Hendricks Franssen and
Kinzelbach, 2009], the aim of our research is to analyze and
mitigate the effects of non-Gaussian data dependence on
the performance of p-space EnKFs. Picking up the idea of
GA, we propose nonlinear, monotonic transformations of
marginal distributions to move arbitrarily distributed data
closer to Gaussianity, at least in the univariate sense. Com-
pared to previous works on this topic [e.g., Béal et al.,
2010; Simon and Bertino, 2009], we will apply GA in
EnKFs for pure parameter estimation instead of state vari-
able estimation or joint state-parameter estimation. Updat-
ing only the parameters also obliterates the need to perform
a back transformation of updated transformed states.
Instead, we obtain updated states from new model runs with
the updated parameters. This ensures that the updated state
fields always obey the governing equations and mass or
energy balances, which is a substantial theoretical advant-
age over back transformed state fields. The proposed meth-
odology (p-space EnKF with transformed data) will be
denoted here by tEnKF. Additionally, our work covers criti-
cal issues of GA in any type of EnKF that have never been
discussed before. These include transformation of measure-
ment errors, implementation of physical distribution bounds
in the GA and the influence of multivariate dependence
structures among state variables on the performance gain by
GA. Thus, we provide more extensive approaches to predict
the success of GA in p-space EnKFs prior to application
that exceed the considerations in previous studies by far.
Finally, a significant difference to previous studies is that
we quantify the improvement by GA with rigorous theoreti-
cal measures taken from geostatistical optimal design of
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experiments, and we assess for the first time the statistical
significance of the improvements in 200 repetitions of a test
case.

[11] The benefit of our methodology is illustrated with a
first-time application of EnKFs to hydraulic tomography
(HT), featuring a multi-Gaussian log conductivity model but
non-Gaussian states in a 3-D setup. Among all methods for
HT reported in the literature (see section 5.1) that solve the
original pressure equation, we could achieve an unprece-
dented numerical resolution of the inversion even on a con-
temporary desktop computer. It will be shown that GA leads
to an apparent pseudolinearization of the dependence struc-
ture between drawdown data and multi-Gaussian log con-
ductivity fields, which can be more accurately exploited by
the filter. This yields a more accurate quantification of pa-
rameter uncertainty and hence a more accurate prognosis of
flow and transport statistics. A detailed discussion of the uni-
variate character of GA and the pseudocharacter of the linea-
rization is provided in sections 4.6 and 7. In a study parallel
to ours [Zhou et al., 2011], similar transformation techni-
ques are also applied on parameters, but aim at improving
the characterization of non-multi-Gaussian hydraulic con-
ductivity fields. In contrast, we focus on the estimation of
multi-Gaussian parameter fields, but discuss in depth the
conditions when GA will be beneficial, looking at both uni-
variate and multivariate phenomena to support the decision.

[12] There are other methods available to assimilate non-
multi-Gaussian data, which we, however, rate as less prom-
ising than our suggested approach. Mostly, those methods
are limited in their applicability because of their much
higher computational effort. For the sake of completeness,
we provide a detailed overview of these alternatives and
their limitations in section 2. We proceed with our sug-
gested improvement by presenting the original analysis
scheme of the p-space EnKF in section 3 and introducing
the tEnKF in section 4.

2. Review of Alternative Approaches
[13] The particle filter (PF) [Gordon et al., 1993] is able

to handle any type of statistical distribution and is very ro-
bust for strongly nonlinear model dynamics. The PF works
on the basis of a large number of particles, which are the
equivalents of the stochastic realizations in the EnKF. The
particles sample the state (and possibly also the parameter)
space according to a given prior distribution. The particle
filter allows for a maximum flexibility concerning the func-
tional shape of this prior distribution. The particles are
propagated forward in time by the simulation model. When
measurements become available, the particles are weighted
according to the differences between simulated and meas-
ured values.

[14] In the presence of many or strong data, the PF tends
to assign very small weights to many particles and large
weights to a few particles, leading to a severe degeneration
of the statistics because of too small effective (weighted)
sample sizes [Kong et al., 1994]. This has been identified as
a major obstacle to high-dimensional filtering [Snyder et al.,
2008]. Resampling techniques like sequential importance
resampling can reduce these problems, but various papers
argue that the resampling techniques will not be enough to
make the particle filter feasible for large-scale geophysical

applications [van Leeuwen, 2009; Snyder et al., 2008]. A
significant amount of research has been invested to limit
this problem. It became common to eliminate particles with
very small weights and replace them with particles that are
close to the successful (high-weighted) particles, e.g., using
sequential importance resampling [Gordon et al., 1993;
Moradkhani et al., 2005a; Leisenring and Moradkhani,
2010], residual sampling [Liu and Chen, 1998], stochastic
universal resampling [Kitagawa, 1996], Markov chain
Monte Carlo (MCMC) methods [Bocquet et al., 2010; sub-
mitted AGU paper] or the unscented PF, where the
unscented Kalman filter (UKF) is utilized for proposal gen-
eration [Van Der Merwe et al., 2001]. An alternative is to
resample from a Gaussian distribution on the basis of first
and second moments estimated from all the particles [Xiong
et al., 2006; Nakano et al., 2007]. Further details on resam-
pling in the context of the PF are given by van Leeuwen
[2009] and Arulampalam et al. [2002].

[15] The PF has been applied much less in the hydrologic
sciences than the EnKF. The main applications of the PF
have been rainfall-runoff modeling including parameter
updating [Moradkhani et al., 2005a; Weerts and El Serafy,
2006; Smith et al., 2008] and assimilation of remote sens-
ing data [Pan et al., 2008; Han and Li, 2008; Qin et al.,
2009; Montzka et al., 2011; Rings et al., 2010; Dechant
and Moradkhani, 2011]. Ng et al. [2009] improved esti-
mates of groundwater recharge by assimilating chloride
data with the PF.

[16] In all these examples, the models used had at most
some thousands of states and less than 20 unknown parame-
ters. This points to the main current limitation of the PF: In
order to sample adequately a high-dimensional state and pa-
rameter space, a very large number of particles is needed.
Resampling, MCMC methods and improved proposal distri-
butions (see above) slow down filter divergence for large-
scale applications. Therefore, although the PF is one of the
important alternatives for the EnKF, currently it needs a
very large amount of CPU time, and hardly any examples of
implementation together with large simulation models can
be found in the literature. Nevertheless, recently some works
[van Leeuwen, 2010; Vrugt et al., submitted manuscript,
2010] give hope that in the future the particle filter could
also be used in combination with large simulation models.

[17] Non-Gaussian probability density functions (pdf)
can also be approximated by a number of Gaussian pdfs
using a Gaussian mixture model (GMM). For the purpose
of data assimilation, the parameters of the GMM have to be
estimated; see Sun et al. [2009] for a groundwater applica-
tion and van Leeuwen [2009], Bocquet et al. [2010], and
Van Delft et al. [2009] for combinations of EnKF and PF.
However, none of these alternative methods has been tested
for large-scale simulation models, probably because these
methods still require a too large amount of CPU time for
such applications.

3. Parameter-Space EnKF Analysis Scheme
[18] The set of equations needed to update an ensemble

of parameter fields with the p-space EnKF shall be pre-
sented in the context of geostatistical inversion, according
to Nowak [2009]. In hydrogeological applications, the pa-
rameter vector s contains, e.g., elementwise log conductivity
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values of a discretized domain. An error-free model
y ¼ fðsÞ is assumed to predict states such as drawdown,
pressure head or concentration. The model’s prediction
quality is affected only by the uncertainty in the parame-
ters, i.e., other sources of uncertainty are neglected in this
study. Perturbed measurements are generated by adding a
random measurement error � � Nð0;RÞ to the observed
values in order to ensure comparability with real, noisy
observations yo (see also Burgers et al. [1998] for further
details). Here Nð�; �Þ denotes a multivariate Gaussian distri-
bution, and R is the (typically diagonal) covariance matrix
of measurement errors. The deviation of simulated states
from observed states for each realization i ¼ 1; . . . ;N can
be written as

�i ¼ yo � ðyu;i þ �iÞ: (1)

[19] The state covariance matrix Qyy is estimated from
the ensemble by

Qyy ¼ E½ðyu � E½yu�Þðyu � E½yu�Þ
T �: (2)

[20] Likewise, the cross-covariance matrix between pa-
rameters and states, Qsy, is obtained, and the covariance
matrix of measurements is given by Qyy þ R.

[21] The p-space EnKF updates each unconditioned
parameter vector su;i to a conditioned parameter vector sc;i

according to

sc;i ¼ su;i þQsyðQyy þ RÞ�1½yo � ðyu;i þ �iÞ�; (3)

where the influence function K ¼ QsyðQyy þ RÞ�1 is called
Kalman gain and is formally equivalent to the one used in
simple cokriging. Advanced elements of geostatistical
models such as trends with uncertain coefficients [e.g.,
Kitanidis, 1986] can be implicitly included in this formula-
tion [Fritz et al., 2009; Nowak et al., 2003].

[22] The conditional covariance matrix of parameters
(called the error covariance in EnKFs) may be computed
from

Qss;c ¼ E½ðsc � E½sc�Þðsc � E½sc�ÞT �: (4)

[23] The updated ensemble of state predictions yc is
determined from new model runs yc ¼ f ðscÞ, and the condi-
tional mean and the error covariance matrix for the pre-
dicted states are determined analogously.

[24] Like the original state space EnKF, the p-space
EnKF converges to the result of the classical Kalman filter
for linear models and with increasing ensemble size. It is
derived to be an error covariance minimizing scheme for
multi-Gaussian state variables and a linear physical model
[Burgers et al., 1998].

4. Parameter Space EnKF Applied to
Transformed Data

[25] The assumption of multi-Gaussian dependence struc-
tures among state variables is generally not justified for
subsurface flow and transport variables. Instead, the type of
distribution and dependence on log conductivity is governed

by physical processes and imposed boundary conditions.
Only in seldom cases, theoretical distribution functions can
be derived under a set of idealized boundary conditions
[e.g., Bellin and Tonina, 2007; Nowak et al., 2008; Schwede
et al., 2008; Cirpka et al., 2011]. When desired, the parame-
ters of these distribution functions can be fitted to data sets
with the help of the maximum likelihood method or by
moment matching [e.g., Fiorotto and Caroni, 2002].

[26] Figure 1 shows histograms of two exemplary state
variables that are relevant in subsurface applications: draw-
down and solute concentration. Drawdown data are taken
at two different measurement locations in the 3-D test case
setup that will be described in section 5.2. Concentration
data are taken at two arbitrarily chosen measurement loca-
tions in a model setup not shown here. Different histogram
shapes result from the different data types and locations,
and only a fraction of the data follows approximately a nor-
mal distribution which is indicated by the solid lines.

4.1. Transformation Technique

[27] In order to better exploit the EnKF’s potential, we
apply nonlinear, monotonic univariate transformations to
the state variables that render them univariate Gaussian. An
arbitrarily distributed variable y and its Gaussian transform
z are linked by their cumulative distribution functions
(CDFs):

z ¼ G�1½FðyÞ�; (5)

with the corresponding empirical CDF F(y) and the theoret-
ical standard normal CDF G. As G is, per definition,
monotonously increasing, the inverse G�1 exists. The oper-
ation z ¼  ðyÞ (equation (5)) is called GA function.

Figure 1. Histograms of two relevant variables in ground-
water applications. Bars represent relative frequency, and
solid lines show normal distributions that correspond to
mean values and variances calculated from the respective
samples. Data sets in top and bottom rows are taken from
two different measurement locations.
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[28] If a theoretical distribution function of y is available,
the anamorphosis function  ðyÞ is obtained with negligible
computational effort. If fitting a parametric distribution
function is not appropriate, because state variables or the
data do not follow any obvious theoretical distribution,
applying nonparametric methods is an alternative. They
produce more robust results in the sense that fewer simpli-
fying and possibly subjective assumptions are made: Char-
acteristics of the data are drawn from a sample of sufficient
size. We extract this information from the ensemble of MC
realizations yu which is generated within the EnKF scheme
to compute the covariances (see equation (2)), with no
additional computational effort made. This allows to make
the GA transformation specific to the respective local statis-
tics at any given location in a computational domain (see
below).

[29] The procedure of building the anamorphosis func-
tion comprises three main steps, in accordance with the
work of Simon and Bertino [2009]. (1) Find Gaussian val-
ues z corresponding to each of the data values y by analyz-
ing their ranks: construction of the empirical anamorphosis
function (section 4.2). (2) Fit a continuous function to the
empirical anamorphosis function: interpolation of the em-
pirical anamorphosis function (section 4.3). (3) Define the
tails of the continuous anamorphosis function by assigning
an extrapolation rule (section 4.4).

[30] In the following, without loss of generality, we will
assume that the distribution type of the state variable under
consideration is unknown. We build an individual anamor-
phosis function for each measurement location from all
realizations, as suggested by Béal et al. [2010]. This local
approach of transforming the ensemble is less restrictive
than constructing a global anamorphosis function for all
locations [e.g., Simon and Bertino, 2009], because statisti-
cal stationarity for state variables is difficult to justify in
subsurface applications, e.g., for heads or concentrations in
bounded domains with nonsimplistic initial and boundary
conditions [e.g., Osnes, 1995; Rubin and Dagan, 1988,
1989].

4.2. Empirical Anamorphosis Function

[31] To obtain an empirical CDF FjðyjÞ, we use the esti-
mator, following Johnson and Wichern [1988]:

Fj ¼
j� 1

2

N
; (6)

where j are the ranks of the data and N is the sample size
(in our case, the ensemble size of the EnKF). From Fj, we
can determine the Gaussian transform z by rank transforma-
tion. This results in a transformed Gaussian data set that
covers a data range from zmin ¼ G�1½ð1� 1=2Þ=N � to
zmax ¼ G�1½ðN � 1=2Þ=N �. An exemplary empirical ana-
morphosis function for N ¼ 100 is plotted in Figure 2.
Characteristics of both the untransformed and the trans-
formed variable are illustrated in the corresponding histo-
grams: While, in this example, the original variable y is
highly negatively skewed, the transformed variable z is
symmetric around zero and displays a characteristically
bell-shaped curve. By virtue of the empirical GA, the nor-
mal probability plot forms a perfectly straight line, indicat-
ing that z indeed follows a Gaussian distribution within the
range covered by the sample.

4.3. Continuous Anamorphosis Function

[32] The correction of each parameter field by equation
(3) is based on the deviation of the simulated measurements
from the observed ones. Therefore, the observed measure-
ments have to be transformed according to the same ana-
morphosis function, and an appropriate fitting technique
has to be found for observed data values that are not
included in the numerical Monte Carlo ensemble.

[33] Both Béal et al. [2010] and Simon and Bertino
[2009] define a continuous anamorphosis function by line-
arly interpolating the empirical anamorphosis function. We
propose interpolating the empirical CDF instead, and sub-
sequently determine the continuous anamorphosis function.
Linear interpolation of the CDF is a frequently used method
in the statistics community. Furthermore, we believe that
any linear assumption should be made at the earliest possi-
ble stage: Rather, the input of the nonlinear anamorphosis
function shall be interpolated than its output.

[34] In an extensive numerical investigation not shown
here, we found that more elaborate fitting techniques (e.g.,
regression by expansion in Hermite polynomials as applied
in disjunctive kriging [Rivoirard, 1994]) do not signifi-
cantly increase the accuracy when reproducing a specific
distribution. Instead, they are prone to oscillations toward
the tails of the distribution. For ensemble sizes larger than
N ¼ 200, linear interpolation of the empirical CDF proved
to be a stable and reasonably accurate choice. The ensem-
ble size required for reasonably accurate results depends
strongly on the individual problem; however, ensemble

Figure 2. Histogram of untransformed variable, empirical anamorphosis function, histogram of trans-
formed variable, and normal probability plot for transformed variable.
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sizes smaller than N ¼ 200 are generally not recommended
for subsurface applications [Chen and Zhang, 2006].

4.4. Definition of the Tails

[35] It may occur that observed measurement values lie
outside the range sampled by the initial MC simulation. In
absence of better knowledge, we suggest linearly extrapo-
lating the anamorphosis function with a mean slope (e.g.,
extrapolating with a straight line that connects the lowest
and the highest original data values and their respective
transformed values). This is equivalent to making a Gaus-
sian assumption for the tails, since values are transformed
linearly. This approach is more stable with regard to sam-
pling errors in small ensembles than extrapolating the slope
of the last pair of points, and is not subject to oscillations
such as extrapolation with Hermite polynomials.

[36] Note that if the observations at a significant amount
of measurement locations fall outside the predicted ensem-
ble range, statistics and model assumptions should be
checked as argued by Béal et al. [2010]. This might be an
indication of model bias but can always appear legitimately
because of the limited ensemble size, with small probabil-
ities in the order of P � 1

N per individual data value (see the
estimated CDF, equation (6)). Therefore, we consider it im-
portant to not restrict the tEnKF to error-free models a pri-
ori. Ideas for extrapolation could be refined in future
research. For a well-known, but less elaborate standard pro-
cedure to determine the anamorphosis function, we refer
the reader to the normal score transformation as used in the
GSLIB package [Deutsch and Journel, 1998].

4.5. Transformation of Measurement Errors

[37] Real observations generally include measurement
errors due to imperfections in the measurement process
(limited accuracy of measurement instruments, human fail-
ure, scale disparity, etc.). In the untransformed space, the
EnKF adds a random error � � Nð0;RÞ to the simulated
states in order to simulate the error of the measurement pro-
cess (see equation (1)).

[38] We suggest building an anamorphosis function based
on these perturbed measurements. This ensures that simu-
lated data and real observations are compatible also in
the transformed space. At the same time, when generating
many random values of � for each sample member yi, it acts
as a kernel smoothing technique [e.g., Cheng and Parzen,
1997] for estimating the CDF, making the anamorphosis
function more robust even for small ensemble sizes.

4.6. Implicit Pseudolinearization

[39] For parameter estimation, the p-space EnKF updat-
ing step interprets the dependence between the observed
state variables and the unknown parameters. If the unknown
parameters follow a Gaussian distribution (mostly assumed
for log conductivity in traditional geostatistical inversion
techniques), GA of dependent state variables implicitly trig-
gers a pseudolinearization of the dependence structure. This
effect is exploited by the filter’s linear updating step and
thus leads to more accurate updating results. Figure 4a (see
section 5.3) exemplarily shows the dependence between
drawdown data and log conductivity before and after trans-
formation: The strongly nonlinear dependence of draw-
down on log conductivity has been converted to an almost
perfectly linear dependence. The data shown here are taken

from the 3-D test case presented in section 5. A more
detailed discussion of this topic is provided in section 7.

4.7. Updating Step in the Transformed Space

[40] The updating equation of the tEnKF can now be
written in terms of the Gaussian anamorphosed variables
ŷ ¼ z :

sc;i ¼ su;i þQsŷðQy dyþ RÞ�1
�

ŷo � ðyu;
c

iþ �iÞ
�
; (7)

with the hat symbolizing anamorphosed variables and their
covariances. The vector of the N transformed ensemble val-
ues at each of the k measurement locations is obtained by
evaluating the individual anamorphosis functions  k . The
perturbed measurement covariance matrix Qy dyþ R can be
directly calculated from the transformed perturbed meas-
urements yciþ �. In order to determine the cross-covariance
matrix Qsŷ, the simulated measurements are transformed
according to the same anamorphosis function, but without
their respective measurement errors.

[41] After the updating step, back transformation of the
state variables is not required in the context of pure param-
eter estimation or geostatistical inversion. Instead, the
updated states are obtained from a subsequent model run
on the updated ensemble of parameter fields. This consti-
tutes a major difference to the application of tEnKFs in
state estimation, where transformed states are directly
updated by the EnKF at all computational nodes in the do-
main, and have to be back transformed after updating in the
transformed space. Therefore, in state estimation, the ana-
morphosis function is required to be bijective and spatially
continuous. In our case, the anamorphosis function does
not have to be bijective (although it is when using the
above methods), and we avoid the problem of having to
construct a spatially continuous anamorphosis function.
Also, the updated states from subsequent simulation with-
out back transformation are guaranteed to follow the gov-
erning equations and all mass or energy balances.

[42] Up to now, in EnKF applications, observations that
fall outside the physical range (e.g., negative concentra-
tions) have been corrected manually [e.g., Clark et al.,
2008], which compromises the random character of the
measurement error. The tEnKF as defined in section 4 does
not cut unphysical observations but rather leaves them
untouched in the spirit of maintaining the randomness of
their measurement errors. Instead, unphysical measurement
values are automatically filtered out during the course of
updating, because the state field is back transformed by
solving the physical differential equation. This again avoids
the appearance of unphysical updated state variable values.

5. Application to Hydraulic Tomography
[43] Aquifer characterization by HT requires the assimi-

lation of drawdown data from multiple hydraulic interfer-
ence tests that depend nonlinearly on log conductivity. Our
tEnKF is designed to increase the accuracy of nonlinear pa-
rameter estimation in such nonlinear problems, and the
improvement will be demonstrated by application to HT,
here restricted to steady state conditions. Our choice of a
steady state case study is not a restriction of our method,
but is caused by our intention to compare the tEnKF to
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reference solutions from bootstrap filtering (see section
5.4). As a welcome side effect, this also avoids the choice
among the many available methods that mitigate the com-
putational effort of transient hydraulic tomography (i.e.,
using temporal moments of drawdown as done by Li et al.
[2005]). Several methods to evaluate HT can be found
in the literature. They vary in their physical background
and computational effort, and shall be briefly outlined in
section 5.1.

5.1. Existing Methods

[44] HT was proposed in the 1990s [Gottlieb and
Dietrich, 1995; Butler et al., 1999], but became more pop-
ular only later [e.g., Yeh and Liu, 2000]. Recent applica-
tions are reported by, e.g., Vesselinov et al. [2001], Illman
et al. [2010], Straface et al. [2007], and Li et al. [2007].

[45] Different inverse modeling methods have been
applied to HT, among which the most frequent ones are the
quasi-linear geostatistical approach (QL) [Kitanidis, 1995]
and the sequential successive linear estimator (SSLE) [e.g.,
Yeh and Liu, 2000].

[46] In order to take full profit of the multiple interfer-
ence tests and the observed head responses, it is important
to use the entire time series of all observed head data,
which requires inverse modeling in transient state. This
makes the calculations very CPU intensive. Many alterna-
tives to speed up CPU time can be found in the literature,
including the so-called steady shape solution by Bohling
et al. [2002], a reduction of time series by Zhu and Yeh
[2005], temporal moments by Li et al. [2005] and Zhu and
Yeh [2006], a low-frequency asymptotic approach by Vasco
and Karasaki [2006], and ray tracing methods [e.g.,
Brauchler et al., 2007].

[47] Geostatistically based inverse modeling methods like
QL and SSLE require that cross covariances between hy-
draulic head and aquifer parameters are known for all obser-
vation time steps or for all temporal moments. This becomes
a major obstacle if the grid contains a large number of grid
cells, but can be circumvented with the help of spectral
methods [Nowak et al., 2003; Fritz et al., 2009]. Hendricks
Franssen and Gomez-Hernandez [2002] used the sequential
self-calibration method (SSC) for inversion, and Castagna
and Bellin [2009] applied the pilot point method (PP). SSC
and PP do not require the explicit estimation of (cross-) co-
variance matrices, but are nevertheless very CPU-intensive
[Hendricks Franssen and Kinzelbach, 2009]. A much more
detailed review on hydraulic tomography techniques and
applications is provided by Cardiff and Barrash [2011].

[48] Using the EnKF in the context of HT will offer the
following advantages in comparison with other inverse
methodologies: (1) the estimation of large covariance matri-
ces via sensitivity analyses is avoided. (2) The needed CPU
time is smaller than for QL, SSLE, or SSC [Hendricks
Franssen and Kinzelbach, 2009; Nowak, 2009]. (3) It is still
possible to speed up the analysis of transient pumping tests
using temporal moments of drawdown. (4) The use of en-
semble statistics is more accurate than sensitivity-based first-
order cross covariances if the ensemble is sufficiently large
[Nowak, 2009]. Finally, (5) as opposed to impressively fast
methods based on ray tracing [e.g., Brauchler et al., 2007],
the original physical governing equations are kept.

5.2. Description of the 3-D Test Case

[49] Drawdown d ½L� (change in hydraulic head h ½L�)
due to a pumping well with pumping rate q ½L3=T � at loca-
tion x0 in a heterogeneous aquifer with locally isotropic hy-
draulic conductivity K ½L=T � is governed by

r � ½KðxÞrh� ¼ �q�ðx0Þ (8)

together with adequate boundary conditions (with � being
Dirac’s delta).

[50] Our considered domain represents a rectangular 3-D
section of a confined aquifer. It expands over an area of
36 m � 36 m � 3 m and is discretized into ngrid ¼ 432;000
elements (�x ¼ �y ¼ 0:3 m; �z ¼ 0:1 m). The eastern
and western boundaries are fixed to zero drawdown (corre-
sponding to Dirichlet boundary conditions for hydraulic
head). Impermeable boundaries are assigned to the north-
ern, southern, top and bottom boundaries. Log conductivity
Y ¼ ln K is assumed to follow a stationary multi-Gaussian
distribution with an exponential covariance model and a
microscale smoothing parameter [Kitanidis, 1997].

[51] Our hydraulic tomography scenario comprises four
monitoring wells with three equidistant vertical levels
each; see Figure 3. Pumping is induced in four locations
given in Table 1 and marked with solid squares in Figure 3.
At all monitoring locations, measurements of drawdown
are taken for each pumping test at steady state, yielding a
number of measurements nmeas ¼ 48. A synthetic data set is
generated by solving equation (8) for the described pump-
ing tests with a random conductivity field. Measurement
errors, assumed to be uncorrelated and Gaussian distributed
with � � Nð0;RÞ, are added to the synthetic data set. A
summary of parameter values adopted in the 3-D test case,
including geostatistical parameters, is provided in Table 2.

[52] The tEnKF with N ¼ 2;000 realizations is applied
to estimate the unknown conductivity field from the
observed data. The tEnKF analysis scheme is implemented
in MATLAB and coupled with the same MATLAB-based
FEM code and random field generator also used by Nowak
et al. [2008] and run on a simple contemporary desktop
computer. Both the original p-space EnKF and the

Figure 3. The 3-D domain with measurement locations
(open squares) and pumping locations (solid squares).
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transform variant are applied for direct comparison. Note
that no iterations are implemented in order to focus on the
effect of data transformation on the performance of a single
EnKF updating step. Statistical analysis of the two updated
ensembles includes the mean (best estimate) and the var-
iance (prediction variance) of the updated conductivity and
drawdown fields. The total (spatially averaged) prediction
variance of the conditioned parameter field Yc is defined as

vartot½Y � ¼
1

ngrid

1

N

Xngrid

i¼1

XN

j¼1

ðYc;ij � YmeanÞ2; (9)

with Ymean being the mean value prescribed by the geostat-
istical model. The spatially averaged prediction variance is
equivalent to the A criterion of optimal design, and serves
as measure for the absorbed information in spatial estima-
tion [Nowak, 2010].

[53] We apply two measures to quantify the deviation
from the respective ‘‘true’’ fields that provide the synthetic
data set: (1) parameter/prediction bias,

#bias ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ngrid

Xngrid

i¼1

ð#true;i � #c;iÞ2
vuut ; (10)

with # being the parameter Y or the state variable d and #c

being the estimate obtained from cellwise averaging over
all realizations in each version of the p-space EnKF, and
(2) measurement bias,

ybias;k ¼
yc;k � yo;kffiffiffiffiffi

Rk
p ; (11)

defined as deviation of the reproduced measurements yc;k

compared to the observed ones, normalized by the respec-
tive measurement error standard deviation. The sum over
all measurement bias values squared

sum½ybias� ¼
Xnmeas

k¼1

y2
bias;k (12)

will be referred to as measurement bias sum.

5.3. Results and Discussion

[54] Before the tEnKF conditioning step, the drawdown
data at the measurement locations were transformed
according to the methods described in section 4. The em-
pirical anamorphosis functions at two measurement loca-
tions (pumping at location a with x ¼ 10:5 m; y ¼ 10:5 m;
z ¼ 1:5 m, monitoring at location b with x ¼ 10:5 m;
y ¼ 25:5 m; z ¼ 1:5 m) are exemplarily plotted in Figure 4.
Drawdown data from the ensemble at those two locations
are plotted against Y values at the position of strongest cor-
relation. Obviously, a pseudolinearization of dependence is
achieved by GA. The degree of nonlinearity (i.e., the curva-
ture of the anamorphosis function) and thus the gained lin-
earization depends on the measurement location, on the
prevailing dependence structure at the respective location,
and the type of governing equation (here equation (8)).

[55] Figure 5 shows the ‘‘true’’ Y field (top) as well as
the best estimate obtained by the tEnKF (center) and the
prediction variance (bottom). The tEnKF is able to capture
the zone of low hydraulic conductivity in the northeastern
part of the domain and clearly reduces the unconditioned
variance given by the geostatistical model in the surround-
ings of the pumping wells and in the center of the domain,
where information of the four pumping tests overlaps.

[56] A comparison of the performance of the two meth-
ods is provided in Figure 6. Figure 6 shows a horizontal
cross section through the northern part of the domain (y ¼
25.5 m, z ¼ 1.5 m). The best estimate as well as the stand-
ard deviation of the p-space EnKF and the tEnKF are plot-
ted for log conductivity (Figure 6, top) and for drawdown
(Figure 6, bottom, logarithmic scale of ordinate) together
with the synthetic truth that generated the HT data set.
For the largest part of the cross section, the conventional
p-space EnKF clearly underestimates hydraulic conductivity,
in the eastern part it overestimates the synthetic values. The
updating step was not able to cause a significant deviation
from the mean conductivity prescribed by the geostatistical
model. Remember that we have not used any log conductiv-
ity measurements to condition the parameter field, but only
measurements of drawdown. Obviously, the tEnKF is able
to capture the provided information more effectively, and
thus the update of the parameter field is much closer to the
synthetic truth. Also, the estimation variance is significantly
reduced in the vicinity of the wells (marked in Figure 6) in
comparison to the traditional method.

[57] The same holds for drawdown in Figure 6 (bottom).
We show a detail of the cross section through the northeast-
ern pumping well. Here, the p-space EnKF consequently
overestimates the resulting drawdown, while the tEnKF
gives a much better approximation of the true (synthetic)
drawdown in the vicinity of the well.

[58] For a further assessment of both methods, the nor-
malized measurement bias (equation (11)) together with
the normalized standard deviation are plotted in Figure 7.
The measurements reproduced right at the pumping wells
are shown in Figure 7 (top), results at the monitoring loca-
tions can be seen in the bottom part. Obviously, our pro-
posed method improves the estimate at the vast majority of
the measurement locations, indicated by a normalized bias
around zero, mostly lying within the band of plus or minus
one measurement error standard deviation. The worst cases

Table 1. Pumping Locations in the 3-D Domain

Measurement Number x (m) y (m) z (m)

1 10.5 10.5 1.5
14 10.5 25.5 1.5
27 25.5 10.5 1.5
40 25.5 25.5 1.5

Table 2. Model Parameters Used for 3-D Synthetic Test Case

Parameter Symbol Value Unit

Domain discretization
Domain size [Lx, Ly, Lz] [36, 36, 3] m
Grid spacing [Dx, Dy, Dz] [0.3, 0.3, 0.1] m

Geostatistical model for Y
Geometric mean K g 10�5 m s�1

Variance �2
Y 1 –

Correlation length [�x, �y, �z] [5, 5, 0.5] m
Microscale smoothing d 2.5 m
Measurement error �

Standard deviation �� 10% þ 0.01 m
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for the original p-space EnKF occur close to pumping wells
or at the pumping wells themselves. This is also where the
improvement by the tEnKF is largest. Hence, it becomes
evident that the benefit of our suggested method is largest
close to the pumping wells and decreases with distance.

[59] It is also remarkable, that the drawdown reproduced
by the tEnKF is in general less pronounced than the one
obtained by the p-space EnKF, which overestimates draw-
down at many locations (compare also Figure 6). Our ran-
domly chosen test case features characteristic zones of low
conductivity. This property seems to be overestimated by
the traditional EnKF variant, since the updated Y values are
much too low, resulting in a too strong drawdown. Our sug-
gested method is able to better handle this specific data set.
Note that it is not a general property of the tEnKF’s bias to
lie above the p-space EnKF bias, but is an effect of this spe-
cific synthetic truth.

[60] The resulting errors made by the two EnKF variants
in assimilating the synthetic data set are summarized in Ta-
ble 3. The tEnKF achieved a remarkable error reduction of
94.43% when compared to the error made by the traditional
p-space EnKF with regard to the estimated measurements,
and a reduction of 7.02% with regard to the entire log con-
ductivity field. The error made when estimating the state
fields is averaged over all 4 pumping scenarios and was
reduced by 55.17% when applying data transformation.
Yet, the total prediction variance is larger in the tEnKF,
possibly questioning the improvement in processing of in-
formation at first sight.

[61] It can be concluded that the proposed methodology is
able to better reproduce the synthetic truth for both the pa-
rameter field and the state variable fields, while increasing
prediction uncertainty. To clarify these seemingly ambigu-
ous findings and ensure significance and independence of a
specific data set, we provide a comparison with a reference

solution for the EnKF in a statistical framework in section
5.4. There, we will also provide a direct visual comparison
of domain-wide parameter and state fields from the differ-
ent methods.

5.4. Statistical Significance of Results

[62] The above results show that GA improves the accu-
racy of parameter estimation in the described test applica-
tion. Yet this might result from characteristics of the
specific data set. Therefore, 200 repeated test cases were
generated that featured different synthetic data sets each.
Moreover, we compared these results with a reference solu-
tion for the best estimate rather than the synthetic data set,
because this also allows assessing the quality of estimation
variances. The reference solutions were obtained from a
brute force bootstrap filter [Gordon et al., 1993; Smith and
Gelfand, 1992], because it does not rely on the assumptions
of univariate or multivariate Gaussianity or linearity. It is a
direct numerical implementation of Bayes’ theorem. The
bootstrap filter is the limiting case of particle filters for
steady state systems, looking at parameter updating.

[63] However, bootstrap filtering is computationally very
costly, which is the reason that kept us from considering a
more complex or time-dependent setup. To avoid prohibitive
computations, we reduced the test case to a simpler setup.
By these means, we could afford N ¼ 100;000 realizations
for the bootstrap filter, which are required to obtain good
and reliable results. Only for the reference analysis with the
bootstrap filter, we moved from our contemporary desktop
computer to a larger multinode computing cluster. N was
selected on the basis of convergence experiments with the
Jackknife method [Efron, 1982] for different ensemble sizes
and is large enough to make sure that the prediction variance
has a stable value. We considered a 2-D depth-averaged
aquifer that spans an area of 100 m � 100 m, with a single

Figure 4. Empirical anamorphosis functions at two arbitrarily chosen measurement locations. (a)
Location is the well where pumping is induced in the first of four pumping tests ; (b) a monitoring
location.
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pumping well installed in the center of the domain. The
same geostatistical model as described in section 5.2,
reduced to 2-D, was used for field generation. Eight mea-
surement locations are spread regularly around the well, and
one measurement location is positioned right at the well (see
Figure 8).

[64] The synthetic log conductivity and drawdown fields
as well as the results obtained by the three methods (boot-
strap filter, p-space EnKF and tEnKF) are plotted in Figure 9
for one arbitrarily chosen test case among the 200 we ana-
lyzed. Before we look at performance statistics in all 200
test cases, we will discuss the performance for the specific
test case plotted in Figure 9. It becomes evident that the
zone of high conductivity around the pumping well is much
better represented by our suggested method. The drawdown

estimated by the tEnKF is less pronounced and closer to
both the synthetic truth and the bootstrap reference solution
when compared to the overestimation of drawdown by the
p-space EnKF. The tEnKF shows hardly any improvement
over the p-space EnKF for the estimation variance of log
conductivity, it is significantly closer to the reference solu-
tion for the prediction variance of drawdown. The fifth row
shows the normalized measurement bias as defined by
equation (11) and the corresponding standard deviation that
result from applying the three different methods. As in sec-
tion 5.3, the largest improvement when applying the tEnKF
is again visible at the pumping location (measurement 1).

[65] Now, we look at the performance statistics in all
200 cases. We found that, in the vast majority of test cases,
the tEnKF update results in higher contrasts in the

Figure 5. Illustration of 3-D test case: (a) Synthetic log conductivity field, (b) best estimate, and (c)
prediction variance of the log conductivity field as obtained by the tEnKF.
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parameter field while the p-space EnKF update erroneously
stays closer to the mean as prescribed by the geostatistical
model. In order to quantify the deviation from the condi-
tional mean fields obtained by the bootstrap filter instead of
the ‘‘true’’ field, we now use equations (10) and (11) with
respect to the reference solution. To assess the robustness
of GA in the EnKF toward too small ensembles, we
repeated the analysis for different ensemble sizes
N ¼ 1000, 500, 250. The deviation of the EnKF prediction
variance var½Yc� from the weighted bootstrap variance
var½YBS � is defined as RMSE:

�var½Y � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ngrid

Xngrid

i¼1

ðvar½YBS;i� � var½Yc;i�Þ2
vuut : (13)

[66] Results averaged over all 200 test cases are summar-
ized in Table 4. The error of the tEnKF is only 29% for
simulation bias, 63% for the parameter field and 43% for
the state field as compared to the error of the original
p-space EnKF for an ensemble size of N ¼ 1;000. The devi-
ation from the prediction variance obtained by the bootstrap

filter can be reduced by 34%. On the basis of the 95% con-
fidence intervals provided in Table 4, all the improvements
are substantial and statistically significant. With decreasing
ensemble size, the degree of improvement by GA also
decreases because GA based on a small ensemble introdu-
ces additional noise into the analysis (see section 7).

[67] Note that with regard to the estimated parameter
field, the prediction of the tEnKF was in some cases even
worse than the prediction of the traditional p-space EnKF.
In these cases, synthetic data far outside the range sampled
by the EnKF occurred, so that the extrapolated part of the
anamorphosis function was used. This could be controlled
by, e.g., applying an iterative scheme as suggested by
Nowak [2009] or by refining the extrapolation rule in future
research.

[68] The results of the statistical analysis verify the
promising findings from section 5.3. They also justify the
increased prediction variance obtained with the tEnKF in
the 3-D test case, since the prediction variance is in average
significantly closer to the reference solution’s variance.
Cases may occur (as in our 3-D test case), where the
traditional p-space EnKF produces a smaller prediction
variance, which is, however, smaller than in the correct

Figure 6. Cross section through 3-D domain of the test case: (top) Log conductivity and (bottom)
drawdown at y ¼ 25.5 m and z ¼ 1.5 m. Vertical lines show the positions of drawdown measurements.
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solution of Bayes’s theorem. This misleadingly positive
property of the original p-space EnKF discussed in section
5.3 was revealed to be, actually, a drawback by comparing
with the bootstrap filter reference solution. Hence, the find-
ings of our statistical analysis firmly support the introduc-
tion of the tEnKF as an attractive alternative. It outmatches
the traditional p-space EnKF with regard to prediction
quality, and is preferable to bootstrap filters or PF methods
with regard to computational effort.

6. Alternative Transformation Techniques
[69] Different approaches to construct the empirical ana-

morphosis function are possible, and the same holds for the
chosen interpolation and extrapolation techniques. Instead of

constructing the empirical anamorphosis function from per-
turbed measurements, it could be built from the noise-free
simulated ensemble of states. Then, an adequate technique
for the separate transformation of measurement errors has
to be found. For that case, we suggest transforming the

Figure 7. Normalized measurement bias of both methods (black markers, p-space EnKF; orange
markers, tEnKF) distinguished for (top) measurements directly at the pumping wells and (bottom) measure-
ments at monitoring locations. Error bars show the normalized standard deviations; the theoretical values
(red dots, mean around zero; green dashed lines, standard deviation between �1 and 1) are also plotted.

Table 3. Prediction Error of p-Space EnKF and tEnKF: 3-D Test
Case

Error Measure p-Space EnKF tEnKF Error Reduction

Measurement bias sum 946.709 52.736 94.43%
Y bias 0.997 0.927 7.02%
d bias 0.0058 0.0026 55.17%
Prediction variance 1.177 1.451 �23.28%

Figure 8. The 2-D domain with measurement locations
(open squares) and pumping location (solid square).
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Figure 9. Illustration of one arbitrarily chosen 2-D test case: Synthetic truth and best estimates of the
log conductivity and drawdown field (first and second rows), prior variances and prediction variances
(third and fourth rows), and normalized measurement bias (fifth row).

Table 4. Averaged Fraction of tEnKF Error Compared to p-Space EnKF Errora

Ensemble Size Measurement Bias Y Bias d Bias �var½Y �

1000 0.29 (62 � 0:04) 0.63 (62 � 0:02) 0.43 (62 � 0:02) 0.66 (62 � 0:04)
500 0.30 (62 � 0:04) 0.65 (62 � 0:02) 0.45 (62 � 0:02) 0.64 (62 � 0:04)
250 0.60 (62 � 0:09) 0.77 (62 � 0:02) 0.63 (62 � 0:04) 0.74 (62 � 0:03)

aThe 95% confidence intervals for these values are given in parentheses (200 2-D test cases).
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measurement error � by maintaining the fraction of measure-
ment error in the total measurement yu þ � :

�̂k ¼ �k

ffiffiffiffiffiffiffiffi
R̂kk

Rkk

s
; (14)

with

R̂kk ¼ Rkk
Qŷŷ;kk

Qyy;kk
: (15)

[70] Note that separate transformation of simulated mea-
surement and measurement error does not yield the same
anamorphosed perturbed measurement, since the anamor-
phosis function is nonlinear.

[71] Test cases (not shown here for briefness) indicated
that this alternative approach further improves the predic-
tion quality of the state variable field. However, it is not as
effective in reproducing the parameter field when com-
pared to the method discussed previously.

[72] Another advantage of this alternative approach is
the opportunity to include knowledge about physical
bounds of the prior distributions in the construction of the
anamorphosis function. Examples for state variables in
groundwater applications that have physical bounds are
concentration (bounded between zero and solubility) and
hydraulic head (bounded between Dirichlet boundary con-
ditions or bounded at one side because of a combination of
Dirichlet and Neumann boundary conditions).

[73] As soon as physical bounds of a variable’s prior dis-
tribution are reached in the prior ensemble, the values will
cluster at these distribution bounds and can be transformed
in a controlled manner that preserves this bound. If clus-
tered data values are transformed according to their ranks
as described in section 4.2, the problem of nonunique ranks
for identical data values will arise. To avoid this problem,
we suggest assigning the average rank of all clustered val-
ues to the entire cluster. This will introduce a discontinuity
in the anamorphosis function at the physical bound, which
ensures that all clustered values are mapped onto the same
anamorphosed value. The remaining transformed data set
will resemble a truncated range of the Gaussian distribu-
tion. This suggestion is merely a first approach and could
be refined in future research.

7. Applicability to Other Data Types
[74] We have investigated the benefit of the tEnKF for

different variable types that vary in their dependence
between measured values at different locations and
between measured values and parameters. In the following,
we analyze the multivariate dependence structure to give
recommendations for when to use the tEnKF.

7.1. Nonlinearity of Dependence Structures

[75] GA aims to convert a nonlinear dependence of state
variables on parameters into a more linear one, that can be
more efficiently processed by the linear EnKF analysis
scheme. Thus, the degree of improvement by GA depends
on its ability to pseudolinearize the dependence structure
between a state variable at a specific measurement location

and the entire spatial parameter field. This shall be eval-
uated on the basis of rank correlation. A similar analysis
has already been suggested by Béal et al. [2010], but we
extend it further to account for varying dependence struc-
tures in space.

[76] Figure 10a visualizes the dependence of drawdown
measurements at the pumping well (2-D test case; see sec-
tion 5.4) on the parameter field as a function of space, as
determined from the rank correlation. Béal et al. [2010]
only examined one local bivariate dependence, not the
dependencies between all possible bivariate combinations
as we do here. Obviously, the correlation is strongest at the
well and decreases with distance. The dependence structure
shows a rather local and smooth behavior. This is not the
case for concentration data, shown in Figure 10b. It is not
possible to distinguish a simple dependence pattern, the de-
pendence structure is nonlocal and shows various positive
and negative peaks in the domain. This is, e.g., due to the
influence of the source hydraulics on the propagation of the
plume [de Barros and Nowak, 2010].

[77] Consequently, there are several influencing proc-
esses that define the dependence of concentration data on
log conductivity, but univariate transformation can only
provide pseudolinearization in a spatially averaged sense.

[78] Theoretically, different anamorphosis functions for
each separate contribution would be needed to address the

Figure 10. Spatial rank correlation between measure-
ments in the center of the domain and the parameter field:
(a) drawdown data and (b) concentration data.
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different influences on dependence, each with its respective
type of nonlinearity. Since this cannot be handled with uni-
variate transformations, we do not recommend GA for state
variables that show such a complex and nonlocal behavior
in dependence as concentrations show here.

[79] There might also be variables that show a univariate
distribution and multivariate dependence structure close to
Gaussian (e.g., hydraulic heads that are hardly influenced
by boundary conditions). In this case, application of GA is
also not recommended because the construction of the ana-
morphosis function might even reduce the prevailing Gaus-
sianity as a result of the empirical nature of the procedure.

7.2. Remaining Non-Multi-Gaussianity

[80] In order to evaluate the remaining non-multi-Gaus-
sianity of the transformed variables, we evaluate bivariate
copula densities [e.g., Bárdossy and Li, 2008]. Data sets at
two different measurement locations are mapped onto uni-
form marginal distributions by sorting the data values and
dividing their ranks by the total number of measurements.
The resulting values are plotted against each other, and the
copula density is determined on a grid of 100 � 100 ele-
ments in probability space (compare to histogram bins).
Exemplary copula density plots are shown in Figure 11.

[81] Drawdown data are taken from the 2-D test cases
presented in section 5.4 and show a copula density similar
to a Gaussian copula. Thus, the bivariate structure of draw-
down data can be considered bi-Gaussian, and the non-
Gaussian influence of the nonlinear dependence on log
conductivity can be successfully mitigated by univariate
transformation. These properties make a state variable suit-
able for parameter estimation with the tEnKF.

[82] Concentration data, in contrast, do not fulfill these cri-
teria. The data used for the copula density plot in Figure 11b
are taken from Nowak et al. [2010]. Obviously, the ‘‘coffee
bean shaped’’ copula is far from Gaussian and prohibits
a bi-Gaussian assumption, since a Gaussian copula is char-
acterized by its symmetry to both of the diagonals, by
exactly two maxima (one each at (0,0) and (1,1)) and
exactly one saddle point at (0.5, 0.5). As univariate trans-
formation does not affect the bivariate copula density, GA
is not able to convert these data into multivariate Gaussian
values.

[83] Béal et al. [2010] assess the suitability of state varia-
bles for data transformation based only on the rank correla-
tion of the data under consideration (see section 7.1). While
the rank correlation coefficient represents only a measure
for the univariate mean correlation, the shape of a copula
allows to draw conclusions on the type of multivariate struc-
ture as well. Therefore, we suggest analyzing the bivariate
structure of a state variable first by building empirical cop-
ula densities at different combinations of measurement loca-
tions. If the resulting copulas indicate a near-Gaussian
structure, data transformation is a promising approach; if
the copulas are far from Gaussian, however, multivariate
transformations should be considered instead. If the inter-
pretation of the resulting Copula plots is less obvious or
inappropriate because of a small ensemble size, tests for
multivariate normality are given by, e.g., Smith and Jain
[1988] and Cox and Small [1978]. Note that this investiga-
tive step can be performed before transforming the data val-
ues, thus it is possible to make an educated guess about the
expected success of transformation beforehand.

8. Summary and Conclusions
[84] This study has investigated the application of the en-

semble Kalman filter (EnKF) to transformed data in the
context of parameter estimation. The unmodified EnKF is
optimal only for multi-Gaussian variables, i.e., for Gaus-
sian distributed states that are characterized by multi-Gaus-
sian dependence. Béal et al. [2010] and other authors
named in section 1.2 used the concept of Gaussian anamor-
phosis (GA) to transform state variables of arbitrary distri-
bution type into univariate Gaussian variables and thus
mitigated the effects of non-Gaussianity on the perform-
ance of the EnKF.

[85] Our work has transferred and adapted the methodol-
ogy presented by these authors from EnKFs for state esti-
mation to EnKFs for parameter estimation (p-space EnKF)
or geostatistical inversion. We also extend their concept to
allow the treatment of measurement errors, to provide a
more extensive analysis concerning the range of applicabil-
ity based on copulas and multivariate spatial statistics, and
to assess the success of the method with statistical tests in a
large set of 200 test cases.

Figure 11. Exemplary copula density plot: (a) drawdown
data and (b) concentration data.
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[86] We call the p-space EnKF applied to transformed
data tEnKF. The construction of a continuous anamorpho-
sis function and the updating step in the transformed space
are discussed in detail. We showed that the transformation
of state variables implicitly leads to a pseudolinearization
of dependence on the parameter field to be updated, which
is itself assumed to be multi-Gaussian. This results in an
improvement in prediction accuracy, since the EnKF is
optimal for multi-Gaussian variables, works best for mostly
linear models and thus is moved closer to optimality by
GA. This supports the motivation for data transformation
in the context of parameter estimation with a theoretical
foundation.

[87] In contrast to state estimation, state variables are not
back transformed by inverting the anamorphosis function
after updating in the transformed space. Instead, we solve
the physical differential equation with updated parameters,
which ensures physical state variable values through all
steps and fulfillment of the governing equations. Alterna-
tive transformation techniques have been touched upon that
allow to include information about physical bounds of the
prior distributions in the GA.

[88] We provide recommendations how to assess the
degree of suitability for different types of state variables
even before the data transformation step. The tEnKF is a
substantial improvement in performing nonlinear updates,
but it is not yet complete since multi-Gaussianity does not
necessarily follow from univariate Gaussianity. We ana-
lyzed the nonlinearity and structures of multivariate depend-
ence, as well as the remaining non-multi-Gaussianity after
univariate transformation. Experiences gained throughout
this study indicate that the dependence structure is a key
factor in determining the degree of potential improvement.
A strongly nonlinear, but rather local dependence structure
allows substantial improvements. Complex and nonlocal de-
pendence structures cannot be satisfyingly converted to
multi-Gaussian dependence by univariate transformations.
As the limiting factor, we identified the pure structure of
multivariate dependence regardless of marginal distribution
shapes. The reason is that univariate transformations can
change the marginal shape as desired, but cannot change the
bivariate or multivariate dependence structure of the
involved variables. Multivariate transformations would be
needed to address variables that do not fulfill the criteria
mentioned here.

[89] To illustrate the practical success of the tEnKF, we
have chosen an application to hydraulic tomography. A
comprehensive 3-D steady state test case has been pre-
sented that comprises 12 measurement locations. An en-
semble of 2000 multi-Gaussian log conductivity fields was
updated by assimilating synthetic drawdown measurements
of 4 pumping tests. Results showed that the tEnKF outper-
forms the untransformed p-space EnKF with regard to the
quality of the best estimate. The error made when repro-
ducing the synthetic drawdown fields was reduced by more
than 50%. Our test case was a first-time application of an
EnKF to parameter estimation from hydraulic tomography.

[90] To support these promising results and ensure that
they are not merely an artifact of one specific data set, we
additionally analyzed 200 synthetic test cases that featured
a single pumping test in a 2-D domain and ensembles of
1000 realizations each. We determined the error of the

tEnKF by comparing its results with a reference solution
obtained by a bootstrap filter. The statistical analysis of
these results strengthens the conclusions drawn from the
3-D test case: The tEnKF reduced simulation bias by 71%,
the error with regard to the parameter field by 37% and the
error with regard to the state field by 57% as compared to
the performance of the p-space EnKF. Also the deviation
from the prediction variance of the bootstrap filter was sig-
nificantly reduced, indicating a more accurate processing of
information. To test robustness against smaller ensemble
sizes, we repeated this test also with 500 and 250
realizations.

[91] Obviously, the nonlinear function that relates draw-
down data to log conductivity is sufficiently local, can be
pseudolinearized by GA and efficiently exploited by the
tEnKF, leading to an improved accuracy of prognosis. The
degree of nonlinearity and hence the improvement increases
with decreasing distance of monitoring wells from the pump-
ing well.

[92] Altogether, the tEnKF is a valuable tool to address
strong nonlinearity. It keeps the additional effort over the
traditional p-space EnKF very low, while offering a substan-
tial improvement of prediction quality, almost approaching
the prediction accuracy of much more CPU-intensive boot-
strap filters.
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