000021350 001__ 21350
000021350 005__ 20200702121620.0
000021350 0247_ $$2DOI$$a10.1016/j.jhydrol.2012.01.037
000021350 0247_ $$2WOS$$aWOS:000302503100012
000021350 037__ $$aPreJuSER-21350
000021350 041__ $$aeng
000021350 082__ $$a690
000021350 084__ $$2WoS$$aEngineering, Civil
000021350 084__ $$2WoS$$aGeosciences, Multidisciplinary
000021350 084__ $$2WoS$$aWater Resources
000021350 1001_ $$0P:(DE-HGF)0$$aLi, L.$$b0
000021350 245__ $$aJointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter
000021350 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2012
000021350 300__ $$a152 - 169
000021350 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021350 3367_ $$2DataCite$$aOutput Types/Journal article
000021350 3367_ $$00$$2EndNote$$aJournal Article
000021350 3367_ $$2BibTeX$$aARTICLE
000021350 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021350 3367_ $$2DRIVER$$aarticle
000021350 440_0 $$03413$$aJournal of Hydrology$$v428$$x0022-1694
000021350 500__ $$3POF3_Assignment on 2016-02-29
000021350 500__ $$aThe authors gratefully acknowledge the financial support by ENRESA (Project 0079000029) and the Spanish Ministry of Science and Innovation (Project CGL2011-23295). Extra travel Grants awarded to the first and second author by the Ministry of Education (Spain) are also acknowledged. Dr. Jichun Wu and an anonymous reviewer are grateful acknowledged for their comments which helped improving the final version of the manuscript.
000021350 520__ $$aReal-time data from on-line sensors offer the possibility to update environmental simulation models in real-time. Information from on-line sensors concerning contaminant concentrations in groundwater allow for the real-time characterization and control of a contaminant plume. In this paper it is proposed to use the CPU-efficient Ensemble Kalman Filter (EnKF) method, a data assimilation algorithm, for jointly updating the flow and transport parameters (hydraulic conductivity and porosity) and state variables (piezometric head and concentration) of a groundwater flow and contaminant transport problem. A synthetic experiment is used to demonstrate the capability of the EnKF to estimate hydraulic conductivity and porosity by assimilating dynamic head and multiple concentration data in a transient flow and transport model. In this work the worth of hydraulic conductivity, porosity, piezometric head, and concentration data is analyzed in the context of aquifer characterization and prediction uncertainty reduction. The results indicate that the characterization of the hydraulic conductivity and porosity fields is continuously improved as more data are assimilated. Also, groundwater flow and mass transport predictions are improved as more and different types of data are assimilated. The beneficial impact of accounting for multiple concentration data is patent. (C) 2012 Elsevier B.V. All rights reserved.
000021350 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000021350 588__ $$aDataset connected to Web of Science
000021350 65320 $$2Author$$aData assimilation
000021350 65320 $$2Author$$aStochastic transport
000021350 65320 $$2Author$$aEnsemble Kalman filter
000021350 65320 $$2Author$$aMultiple concentration data
000021350 65320 $$2Author$$aHydraulic conductivity and porosity
000021350 65320 $$2Author$$aHeterogeneity
000021350 650_7 $$2WoSType$$aJ
000021350 7001_ $$0P:(DE-HGF)0$$aZhou, H.Y.$$b1
000021350 7001_ $$0P:(DE-HGF)0$$aGomez-Hernandez, J.J.$$b2
000021350 7001_ $$0P:(DE-Juel1)138662$$aHendricks-Franssen, H.J.$$b3$$uFZJ
000021350 773__ $$0PERI:(DE-600)1473173-3$$a10.1016/j.jhydrol.2012.01.037$$gVol. 428-429, p. 152 - 169$$p152 - 169$$q428-429<152 - 169$$tJournal of hydrology$$v428-429$$x0022-1694$$y2012
000021350 8567_ $$uhttp://dx.doi.org/10.1016/j.jhydrol.2012.01.037
000021350 909CO $$ooai:juser.fz-juelich.de:21350$$pVDB$$pVDB:Earth_Environment
000021350 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021350 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021350 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021350 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021350 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021350 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021350 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021350 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021350 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000021350 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000021350 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000021350 9141_ $$y2012
000021350 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000021350 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000021350 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000021350 970__ $$aVDB:(DE-Juel1)137335
000021350 980__ $$aVDB
000021350 980__ $$aConvertedRecord
000021350 980__ $$ajournal
000021350 980__ $$aI:(DE-Juel1)IBG-3-20101118
000021350 980__ $$aUNRESTRICTED