000021518 001__ 21518
000021518 005__ 20240619091014.0
000021518 0247_ $$2DOI$$a10.1088/0953-2048/25/1/015012
000021518 0247_ $$2WOS$$aWOS:000298413200025
000021518 037__ $$aPreJuSER-21518
000021518 041__ $$aeng
000021518 082__ $$a530
000021518 084__ $$2WoS$$aPhysics, Applied
000021518 084__ $$2WoS$$aPhysics, Condensed Matter
000021518 1001_ $$0P:(DE-Juel1)VDB83991$$aDong, H.$$b0$$uFZJ
000021518 245__ $$aEffect of voltage source internal resistance on the SQUID bootstrap circuit
000021518 260__ $$aBristol$$bIOP Publ.$$c2012
000021518 300__ $$a015012
000021518 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021518 3367_ $$2DataCite$$aOutput Types/Journal article
000021518 3367_ $$00$$2EndNote$$aJournal Article
000021518 3367_ $$2BibTeX$$aARTICLE
000021518 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021518 3367_ $$2DRIVER$$aarticle
000021518 440_0 $$05665$$aSuperconductor Science and Technology$$v25$$x0953-2048$$y1
000021518 500__ $$3POF3_Assignment on 2016-02-29
000021518 500__ $$aThis work is supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos KGCX2-YW-906 and KGCX2-EW-105).
000021518 520__ $$aThe voltage-biased SQUID bootstrap circuit (SBC) is suitable for achieving simple and low-noise direct readout of dc SQUIDs. In practice, an ideal voltage bias is difficult to realize because of non-zero internal resistance R-in of the bias voltage source. In order to clearly observe the influence of R-in on the SBC parameters (namely the flux-to-current transfer coefficient (partial derivative I=partial derivative Phi)(SBC) and the dynamic resistance R-d(SBC))and the noise performance, we introduced an additional adjustable resistor R-ad at room temperature to simulate a variable R-in between the SQUID and the preamplifier. We found that the measured SQUID flux noise does not rise, even though R-ad increases significantly. This result demonstrates that a highly resistive connection can be inserted between the liquid-helium-cooled SQUID and the room-temperature readout electronics in the SBC scheme, thus reducing the conductive heat loss of the system. This work will be significant for developing multichannel SBC readout systems, e. g. for biomagnetism, and systems using SQUIDs as amplifiers, for example, in TES-array readout.
000021518 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000021518 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x1
000021518 588__ $$aDataset connected to Web of Science
000021518 650_7 $$2WoSType$$aJ
000021518 7001_ $$0P:(DE-Juel1)VDB84595$$aZhang, G.$$b1$$uFZJ
000021518 7001_ $$0P:(DE-HGF)0$$aWang, Y.$$b2
000021518 7001_ $$0P:(DE-Juel1)VDB5476$$aZhang, Y.$$b3$$uFZJ
000021518 7001_ $$0P:(DE-HGF)0$$aXie, X.$$b4
000021518 7001_ $$0P:(DE-Juel1)128697$$aKrause, H.-J.$$b5$$uFZJ
000021518 7001_ $$0P:(DE-Juel1)VDB11782$$aBraginski, A.$$b6$$uFZJ
000021518 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, A.$$b7$$uFZJ
000021518 773__ $$0PERI:(DE-600)1361475-7$$a10.1088/0953-2048/25/1/015012$$gVol. 25, p. 015012$$p015012$$q25<015012$$tSuperconductor science and technology$$v25$$x0953-2048$$y2012
000021518 8567_ $$uhttp://dx.doi.org/10.1088/0953-2048/25/1/015012
000021518 909CO $$ooai:juser.fz-juelich.de:21518$$pVDB
000021518 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021518 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000021518 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021518 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021518 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021518 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021518 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021518 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021518 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021518 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000021518 9141_ $$y2012
000021518 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000021518 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x1
000021518 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000021518 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000021518 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$gICS$$kICS-8$$lBioelektronik$$x0
000021518 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$gPGI$$kPGI-8$$lBioelektronik$$x1
000021518 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000021518 970__ $$aVDB:(DE-Juel1)137521
000021518 980__ $$aVDB
000021518 980__ $$aConvertedRecord
000021518 980__ $$ajournal
000021518 980__ $$aI:(DE-Juel1)ICS-8-20110106
000021518 980__ $$aI:(DE-Juel1)PGI-8-20110106
000021518 980__ $$aI:(DE-82)080009_20140620
000021518 980__ $$aUNRESTRICTED
000021518 981__ $$aI:(DE-Juel1)IBI-3-20200312
000021518 981__ $$aI:(DE-Juel1)PGI-8-20110106
000021518 981__ $$aI:(DE-Juel1)VDB881