001     21518
005     20240619091014.0
024 7 _ |2 DOI
|a 10.1088/0953-2048/25/1/015012
024 7 _ |2 WOS
|a WOS:000298413200025
037 _ _ |a PreJuSER-21518
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-Juel1)VDB83991
|a Dong, H.
|b 0
|u FZJ
245 _ _ |a Effect of voltage source internal resistance on the SQUID bootstrap circuit
260 _ _ |a Bristol
|b IOP Publ.
|c 2012
300 _ _ |a 015012
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5665
|a Superconductor Science and Technology
|v 25
|x 0953-2048
|y 1
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work is supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant Nos KGCX2-YW-906 and KGCX2-EW-105).
520 _ _ |a The voltage-biased SQUID bootstrap circuit (SBC) is suitable for achieving simple and low-noise direct readout of dc SQUIDs. In practice, an ideal voltage bias is difficult to realize because of non-zero internal resistance R-in of the bias voltage source. In order to clearly observe the influence of R-in on the SBC parameters (namely the flux-to-current transfer coefficient (partial derivative I=partial derivative Phi)(SBC) and the dynamic resistance R-d(SBC))and the noise performance, we introduced an additional adjustable resistor R-ad at room temperature to simulate a variable R-in between the SQUID and the preamplifier. We found that the measured SQUID flux noise does not rise, even though R-ad increases significantly. This result demonstrates that a highly resistive connection can be inserted between the liquid-helium-cooled SQUID and the room-temperature readout electronics in the SBC scheme, thus reducing the conductive heat loss of the system. This work will be significant for developing multichannel SBC readout systems, e. g. for biomagnetism, and systems using SQUIDs as amplifiers, for example, in TES-array readout.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB84595
|a Zhang, G.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Wang, Y.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB5476
|a Zhang, Y.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Xie, X.
|b 4
700 1 _ |0 P:(DE-Juel1)128697
|a Krause, H.-J.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB11782
|a Braginski, A.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)128713
|a Offenhäusser, A.
|b 7
|u FZJ
773 _ _ |0 PERI:(DE-600)1361475-7
|a 10.1088/0953-2048/25/1/015012
|g Vol. 25, p. 015012
|p 015012
|q 25<015012
|t Superconductor science and technology
|v 25
|x 0953-2048
|y 2012
856 7 _ |u http://dx.doi.org/10.1088/0953-2048/25/1/015012
909 C O |o oai:juser.fz-juelich.de:21518
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 1
913 2 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-559H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 1
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0020
|2 StatID
|a No Peer review
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|g ICS
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|g PGI
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)137521
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-3-20200312
981 _ _ |a I:(DE-Juel1)PGI-8-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21