001     21592
005     20210216103800.0
020 _ _ |a 978-3-89336-760-3
024 7 _ |2 ISSN
|a 1866-1807
024 7 _ |2 Handle
|a 2128/4548
037 _ _ |a PreJuSER-21592
041 _ _ |a English
082 _ _ |a 500
082 _ _ |a 600
100 1 _ |0 P:(DE-Juel1)VDB98376
|a Kordt, Pascal
|b 0
|e Corresponding author
|u FZJ
245 _ _ |a Single-site Green-function of the Dirac equation for full-potential electron scattering
260 _ _ |a Jülich
|b Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag
|c 2011
300 _ _ |a 138 S.
336 7 _ |0 PUB:(DE-HGF)15
|2 PUB:(DE-HGF)
|a Internal Report
336 7 _ |2 DataCite
|a Output Types/Report
336 7 _ |2 BibTeX
|a TECHREPORT
336 7 _ |2 ORCID
|a REPORT
336 7 _ |0 10
|2 EndNote
|a Report
336 7 _ |2 DRIVER
|a report
490 0 _ |0 PERI:(DE-600)2445293-2
|a Schriften des Forschungszentrums Jülich. Schlüsseltechnologien / Key Technologies
|v 34
500 _ _ |a Record converted from JUWEL: 18.07.2013
500 _ _ |a Record converted from VDB: 12.11.2012
502 _ _ |a RWTH Aachen, Diss., 2011
|b Diplom (Univ.)
|c RWTH Aachen
|d 2011
520 _ _ |a I present an elaborated analytical examination of the Green function of an electron scattered at a single-site potential, for both the Schrödinger and the Dirac equation, followed by an efficient numerical solution, in both cases for potentials of arbitrary shape without an atomic sphere approximation. A numerically stable way to calculate the corresponding regular and irregular wave functions and the Green function is via the angular Lippmann-Schwinger integral equations. These are solved based on an expansion in Chebyshev polynomials and their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a system of algebraic linear equations. Gonzales et al. developed this method for the Schrödinger equation, where it gives a much higher accuracy compared to previous perturbation methods, with only modest increase in computational effort. In order to apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations, based on a decomposition of the potential matrix into spin spherical harmonics, exploiting certain properties of this matrix. The resulting method was embedded into a Korringa-Kohn-Rostoker code for density functional calculations. As an example, the method is applied by calculating phase shifts and the Mott scattering of a tungsten impurity.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
655 _ 7 |a Hochschulschrift
|x Diploma Thesis (Univ.)
856 4 _ |u https://juser.fz-juelich.de/record/21592/files/Schluesseltech_34.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21592/files/Schluesseltech_34.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21592/files/Schluesseltech_34.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21592/files/Schluesseltech_34.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:21592
|p openaire
|p open_access
|p driver
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
970 _ _ |a VDB:(DE-Juel1)137617
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a intrep
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)IAS-1-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21