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Abstract

I present an elaborated analytical examination of the Green function of an electron
scattered at a single-site potential, for both the Schrödinger and the Dirac equation,
followed by an efficient numerical solution, in both cases for potentials of arbitrary
shape without an atomic sphere approximation.

A numerically stable way to calculate the corresponding regular and irregular wave
functions and the Green function is via the angular Lippmann-Schwinger integral
equations. These are solved based on an expansion in Chebyshev polynomials and
their recursion relations, allowing to rewrite the Lippmann-Schwinger equations into a
system of algebraic linear equations. Gonzales et al. developed this method for the
Schrödinger equation, where it gives a much higher accuracy compared to previous
perturbation methods, with only modest increase in computational effort. In order to
apply it to the Dirac equation, I developed relativistic Lippmann-Schwinger equations,
based on a decomposition of the potential matrix into spin spherical harmonics,
exploiting certain properties of this matrix. The resulting method was embedded
into a Korringa-Kohn-Rostoker code for density functional calculations. As an
example, the method is applied by calculating phase shifts and the Mott scattering
of a tungsten impurity.
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1 Introduction

A large portion of the technological progress seen over the past decades took place
on grounds of materials research and condensed matter physics. Desired material
properties are highly diverse, ranging from mechanical requirements for a reliably
constructed aeroplane, over electrical specifications in solar cells, up to magnetoelectric
properties in hard disk drives – to name just a few out of endless examples. The
second half of the 20th century could be termed the microelectronics era. During
this time, the world witnessed unprecedented and rapid changes in communication,
information processing and information storing, starting from the earliest transistor
up to having impressively powerful microprocessors in our mobile phones now, which
would still have filled a supercomputing centre by the time I saw the light of day.

Most electronic devices nowadays work with binary digit data transmission, based
on the presence or absence of electric charge (or, in other words, based on electrons
and holes). Apart from the electron charge, another property is exploited: its spin.
Storing data in a hard disk drive by changing the magnetisation of a bit, i.e. one
tiny piece of magnetic material, is an example. This technology experienced an
important progression after the discovery of the Giant Magnetoresistance effect
(GMR) by Grünberg in Jülich [1] and Fert in Paris [2], allowing a significantly
higher information density. Their work, which was awarded the Nobel prize in 2007,
can be seen as the birth of magnetoelectronics, i.e. the exploitation of magnetic fields
in materials for the control of transport in electronic devices, from which thereafter
developed the field of spintronics (short for spin electronics) [3, 4], which is the field
of electronics based on the manipulation of the electrons’ spin orientation.

It is, from my point of view, absolutely fascinating to see that all the electronic
properties in spintronics and also condensed matter research in general emerge from
just one single, small equation: the Dirac equation. Only the large number of
particles is what makes it in practice impossible to solve the equation exactly in
realistic solid state physics systems. This equation describes the behaviour of an
electron under the influence of an electromagnetic potential, consistent with special
relativity. It was proposed in 1928, just two years after the publication of the
Schrödinger equation, which does not take special relativity into account. Ab
initio methods aim to start from the Schrödinger or the Dirac equation, i.e. from
quantum mechanical principles, to calculate physical properties from it within certain
approximations but without introducing any adjustable parameters1. Such a method
is Density Functional Theory (DFT), which addresses the problem of the immense
amount of particles by using a density instead of wave functions as a central quantity,
and results in effective single-particle Dirac or Schrödinger equations. Its first solid
foundation dates back to the 1960s, when the Hohenberg-Kohn theorem [5] and
the Kohn-Sham equations were published [6]. The often excellent accuracy with by
far lower computational demands compared to wave function based methods, allowed

1The only parameters entering the theory are the electron mass and charge, Planck’s constant
and the speed of light in vacuum.
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it to rise from an initially peripheral position to a standard method in computational
solid state physics and chemistry, including nowadays also fields such as organic
chemistry or biochemistry. The Nobel prize in chemistry that Kohn and Pople were
awarded in 1998 acknowledges the significance of the method.

One of the earliest schemes for the solution of the Kohn-Sham equations within
DFT is based on the Korringa-Kohn-Rostoker (KKR) method [7, 8]. Its roots
are found even earlier than the ones of DFT, namely in the late 1940s, when it was
developed as a wave function method for band structure calculations. It received
only modest initial attention, yet when it was extended to a Green function method
and embedded into DFT, it unveiled its full strength. The Green function can, in
fact, be seen as the heart of the modern version of KKR [9, 10], containing all the
information about the system and giving direct access to the electron density simply
by an energy integration. It is first calculated for the single-site problem, i.e. the
scattering of one electron at a single atomic potential, and then for the whole system,
utilising a multiple scattering matching condition.

Historically, DFT was based on the Schrödinger equation as it has a simpler form
compared to the Dirac equation, making it computationally less demanding. Notwith-
standing, the Schrödinger equation is a serious approximation which is incapable of
describing many important effects in solid state physics. Most strikingly, electron
spin does not occur in the Schrödinger equation.

Expanding the Dirac Hamiltonian in powers of 1/c, where c is the speed of light,
(cf. section 6.4) enables to detect the leading correction terms compared to the
Schrödinger Hamiltonian, out of which the most important ones are the relativistic
mass increase and spin-orbit coupling. The latter, in turn, accounts for a long list of
phenomena, which are the subject of current research. In magnetic materials these
include, for instance, the magnetocrystalline anisotropy2 [11], i.e. the spin alignment
in a preferred direction. Understanding this anisotropy is crucial for the design of
efficient data storage devices. The same is true for the Dzyaloshinskii-Moriya
interaction [12, 13], which is an asymmetric spin interaction in systems with (bulk or
surface) inversion asymmetry. In non-magnetic materials having such an inversion
asymmetry spin-orbit interaction is responsible for the Dresselhaus effect [14] and
the Rashba effect [15]. Furthermore, it explains the formation of two-dimensional or
three-dimensional topological insulators. [16, 17] The Rashba effect describes a spin
splitting which can be observed in semiconductor quantum well structures with a
conduction band building an antisymmetric potential well. The electrons in such a
potential well form effectively a two-dimensional system (called the two-dimensional
electron gas, 2DEG) in an effective electric field, which acts like a magnetic field in
the rest frame of the electrons. As proposed by Datta and Das, by varying the
voltage of a gate electrode the spin splitting can be manipulated which makes this
effect so interesting for technological use, e.g. as a spin transistor. [18, 19, 20]

2Apart from the spin-orbit coupling, magnetocrystalline anisotropy is also caused by dipole-dipole
interactions.
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Quite in general, the spin-orbit interaction is essential for many spin related transport
phenomena. To mention is the spin-relaxation, with the underlying Elliott-Yafet
[21] and Dyakonov-Perel [22] mechanisms. Spin relaxation determines how far
the spin-polarisation of injected spin-polarised electrons can be transmitted in a wire.
Besides, spin-orbit coupling is central for all transport phenomena based on transversal
conductance, such as the anomalous Hall effect, the spin Hall effect and the quantised
versions of them (quantum anomalous Hall effect and quantum spin Hall effect).
A microscopic understanding of these effects is not only at the forefront of science
but also important for their perspective of technological applications. Proposals for
technological use include not only the above mentioned the Datta-Das transistor
[18] based on the Rashba effect, but also quantum computation [23] or spin polarised
solar batteries [24], to mention just a few examples. Whether or not such devices will
really be realisable has yet to be seen in the future.

But it is not only in future high tech applications that relativistic effects play a role.
Simple facts, like the colour of gold, can only be explained by relativistic calculations.
In this example, the relativistic mass increase affects the s electrons (which are closer
to the nucleus and thus move faster) more than the d electrons. As a consequence,
the 5d–6s transition energy is decreased, which leads to an absorption of the blue
colour, reflecting the part of the spectrum that is the golden colour we know. For
silver the transition line lies in the invisible ultra-violet range, giving it its typical
colour. In a non-relativistic world gold would have the same colour.

The KKR method was originally developed within the approximation of spherical
potentials surrounding the atoms (atomic sphere approximation). Many of the
examples above show, however, that asymmetries play an important role. Especially
for structures with low symmetry or open structures it is important to take the full
potential into account. Such structures include surfaces, interfaces, layered systems
including van der Waals crystals, heterostructures, materials with covalent bonds,
point defects, oxides or low-dimensional solids (graphene). Performing calculations in
the atomic sphere approximation here results in errors in the electronic structure, for
instance in the description of the interface or surface dipoles, in the description of
split-off states of electrons or the formation energies of impurities.

To account for the importance of full-potential calculations, KKR (as well as other
DFT methods, e.g. the FLAPW method [25]) was extended to a full-potential scheme
[26], initially only for non-relativistic calculations. On the other hand, to describe
relativistic effects as correctly as possible with an effort comparable to solving the
Schrödinger equation, a scalar-relativistic approach was developed [27, 28], however
initially for spherical potentials only. This approach does not use the full vector
Dirac equation but only a scalar equation. It correctly describes the relativistic mass
increase and the Darwin term, however, it does not include the important spin-orbit
coupling. This restriction was overcome later on by the inclusion of a spin-orbit
coupling term. As it remains an approximation, without a reference it is hard to give
an exact answer to the question for which cases it holds and when it does not. On
the other hand there was the development of a fully relativistic KKR scheme [29],
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however initially for spherical potentials only.

The history of these developments naturally raises the question if it would not be
desirable to have a fully-relativistic full-potential scheme, or in other words: one
scheme that includes all the requirements and effects mentioned above. Such a scheme
would first serve as a valuable reference to control the applicability of the scalar
relativistic or the atomic sphere approximation, but then, even more importantly, also
be able to describe effects beyond the ones that the approximated schemes include
once it has been tested successfully.

Publications approaching this problem are rare [30, 31], even though such implementa-
tions exist. The difficulty in formulating a practically applicable scheme, is an effective
and numerically stable concept and algorithm for the fully-relativistic full-potential
single-site scattering problem. Once this problem is solved, the remaining part of the
calculation is the same as for a spherical fully-relativistic calculation.

In this thesis, I provide an efficient way to solve this problem. Gonzales et al.
[32] presented a technique to compute the single-site scattering problem related to
the Schrödinger equation. They calculated the wave functions via the Lippmann-
Schwinger integral equations, which they solved by applying Chebyshev quadrature
and rewriting the equations into a system of linear equations. Once the wave functions
are known, the Green function can be calculated simply from a sum (cf. section 10.3).
Within the course of this work we will see that Lippmann-Schwinger equations of
formally striking resemblance can also be formulated for the single-site problem of the
full-potential Dirac scattering. The crucial ingredient in formulating these equations
is an expansion of the potential into spin spherical harmonics, which I developed
based on certain properties of the relativistic potential matrix (cf. section 10.5).

I implemented the method compatible for incorporation into a KKR impurity code
that is currently under development in our group. By this means, direct compar-
isons between non-relativistic, scalar-relativistic and fully-relativistic calculations are
accessible.

The single-site scattering problem, however, is even interesting on its own, apart
from its significance for KKR and DFT. Using the code I developed, I performed
calculations of the phase shift of electrons scattering at a tungsten impurity in a
rubidium host. This system was chosen motivated by the aim to have a magnetic
system with large relativistic effects: tungsten is a heavy element with strong spin-
orbit coupling, rubidium is almost free-electron like with a low density, hence tungsten
is magnetic in this system. The phase shifts beautifully show the energy splitting of
the d states of tungsten. Furthermore, I calculated the k-vector dependent scattering
matrices for this impurity, showing the spin-dependent asymmetry in scattering, that
is one of the so-called extrinsic contributions to the anomalous Hall effect.

These are just two examples of how the code can help to understand electronic
properties on the atomic scale. This is what ab initio methods aim for. Another aim
is to have predictive power, i.e. to not only reproduce experimental results, but predict
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properties. That this has been successful in describing various material properties
can be seen in the fact that there are books successfully listing properties for a
comprehensive list of metals [33] or other materials. By making as few approximations
as possible, both concerning the shape of the potential and relativistic effects, I hope
the developed method will show its potential in future calculations in the interesting
field of the quantum theory of materials and the related field of spintronics.

The thesis is structured into four main parts. The first one describes the DFT and
KKR methods. In the second part the non-relativistic theory is presented, in order
to form a sound basis on which to develop the changes necessary in the relativistic
case. The latter is treated in the following, third part, where I also develop the
relativistic Lippmann-Schwinger equations and the corresponding decomposition of
the potential matrix. In the last part I present the numerical methods used and
explain the implemented algorithm. I conclude with calculations of scattering at a
tungsten impurity in a rubidium host crystal.
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Part I

Electronic Structure Calculations



2 Density Functional Theory

Density Functional Theory (DFT) it is an ab-initio method for electronic
structure calculations of steadily growing popularity since the start of its
development in the 1960s. From the initial, but in practice not exactly
solvable, problem of the many-particle Hamiltonian of electrons and nuclei,
DFT provides an efficient way to determine a solid’s ground state properties
of interest. It has been extended to include the electron spin (SDFT) and to
a fully relativistic treatment (RDFT).

2.1 Quantum Mechanical Description of a Solid

The birth of quantum mechanics is marked by Schrödinger’s groundbreaking
publication [34] from the year 1926. With one single equation he was able to accurately
describe arbitrary systems. After its successful validation for small systems, such as
He and H2, Dirac is said to have explained that “chemistry has come to an end”. The
essence is that this equation allows an ab-initio description, i.e. it is not necessary to
introduce any empirical parameters from experimental measurements. Thus it has
not only descriptive but also predictive power. Shortly after, however, it turned out
that, although the Schrödinger equation correctly describes also large systems, the
problem remains how to solve it.

A material consists of atomic nuclei and electrons. Its (non-relativistic) quantum
mechanical description is therefore given by a Hamiltonian that includes the energy
terms of all nuclei and all electrons of the respective material. Both, nuclei and
electrons, move, giving them a kinetic energy contribution. Furthermore, due to
their positive charge, there is a repulsive Coulomb interaction between the nuclei.
Similarly, there is also a repulsive Coulomb interaction between the electrons due to
their negative charge. And finally, between the nuclei and the electrons there is an
attractive Coulomb interaction. Taking all the contributions together results in the
Hamiltonian3

3Notation: N is the number of nuclei, n the number of electrons, Mi the mass of the i-th nucleus,
m ≈ 9.109 · 10−31 kg the electron mass, e ≈ 1.602 · 10−19 C the absolute value of the electron charge
and ε0 ≈ 8.854 · 10−12 AsV−1m−1 the electric constant (or vacuum permittivity). The atomic
positions are given by Ri, the electron positions by ri and their momenta by Pi and pi, respectively
and the corresponding atomic number is given by Zi. All variables are given in SI units.
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As this is a non-relativistic description, it is already an approximation that contains
no relativistic corrections such as the electron spin, the magnetic field produced by
the electrons and the resulting spin-orbit coupling. The corresponding stationary
Schrödinger equation for the combined wave function Ψ(R1, ...,RN ; r1, ..., rn) of all
nuclei and electrons is given by

ĤΨ(R1, ...,RN ; r1, ..., rn) = EΨ(R1, ...,RN ; r1, ..., rn). (2.2)

One of the simplest molecules is H
+

2
, consisting of two protons (the nuclei) and one

electron. Even this seemingly trivial three-body problem has no analytical solution
in its general form. For a solid, the number of nuclei has the order of magnitude of
10

23. So obviously there is no chance for an analytic solution, but also a numerically
exact solution is impossible even on today’s most powerful supercomputers. Not
only the CPU power is limiting the ability to perform such a calculation, but also
just storing the wave function is a hopeless task. Hence there is the need for useful
approximations and calculation concepts. Just shortly after the discovery of the
Schrödinger equation the first rudimentary predecessor of DFT was developed by
Thomas and Fermi [35, 36].

2.2 Born-Oppenheimer Approximation

On the way towards the DFT description of a solid, the first approximation is to treat
electron and nucleon motions independently, exploiting the fact that their motions
take place in different time scales. In simple words: electrons move a lot faster than
the heavy nuclei. Consequently, it is a reasonable approximation to treat the nuclei as
stationary within the electrons’ reference system. After assuming that the complete
wave function can be written as a product of the nucleus wave functions and the
electron wave functions4, the electron problem can be treated independently from
the motion of the nuclei. This approximation was first proposed in 1927 by Born

4This approximation neglects terms of the scalar product (of small magnitude) and excited
electronic states.
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and Oppenheimer [37] and is also known as the adiabatic approximation. Before
calculating the electron structure, one can still calculate the energetically optimal
nucleon positions (relaxation).

The problem of calculating the electron wave function after applying the Born-
Oppenheimer approximation is given by eq. (2.1) without the first summand (the
kinetic energy of the nuclei) and with the third summand (the Coulomb interaction
of the nuclei) being a constant.

2.3 Hohenberg-Kohn Theorem

Applying the Born-Oppenheimer approximation yields an equation for the electron
wave function. The first approximative method to solve it was the Hartree method,
developed in the 1930s. The idea in short is to treat the electron-electron interactions
in a mean field approximation, write the nucleus-nucleus contribution as a potential
independent from the electron positions and separate the many-electron wave function
into a product of single-electron wave functions. It was improved by Fock and
Slater, such that the Pauli principle was obeyed, by demanding an anti-symmetric
many-electron wave function (written as a Slater determinant).

The Hartree-Fock method is still used in certain cases. However, results in solids
are often far from being accurate while the computational time scales unfavourably
with system size.

The foundation in the development of the DFT method was laid by Hohenberg and
Kohn in 1964 [5]. They were able to show that for an interacting electron system
with non-degenerate ground state, in the influence of an external potential Vext(r), all
ground state properties can be expressed as a unique functional F [n(r)] of the electron
density n(r). For any such property and its corresponding functional, the energy can
be expressed as E =

´
drn(r)Vext(r) + F [n(r)]. The density minimising the energy

yields the correct ground state energy and ground state density. A generalised proof
of this theorem was given by Levi in 1982 [38].

From the Hohenberg-Kohn theorem emerged the Kohn-Sham equations, effective
one-electron equations that will be introduced in the following section.

2.4 Kohn-Sham Equations

The essence of the Kohn-Sham equations [6] is to describe a many-particle system by
single particle equations. Kohn and Sham split the energy functional E[n(r)] into
several contributions:

E[n] = Ts[n] + VH [n] +

ˆ
drn(r)Vext(r) + Exc[n]. (2.3)
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The first term Ts[n] is the kinetic energy of non-interacting electrons:

Ts[n] =

n�

i=1

ˆ
drψ∗

i (r)
�
−

�2
2m

∆

�
ψi(r), (2.4)

where the electron density n(r) is expressed in terms of the single electron wave
functions

n(r) =
�

i

|ψi(r)|2 . (2.5)

The second term is the Hartree energy, describing the Coulomb interaction between
electrons:

VH [n] =
1

4πε0

e
2

2

ˆ ˆ
drdr�

n(r)n(r�)
|r − r�|

. (2.6)

The third term describes the interaction of the electrons with an external potential.
And the last term describes exchange-correlation effects between electrons. This
term is unknown and can only be approximated, which is the important systematic
limitation of DFT.

Varying the total energy and applying the Hohenberg-Kohn theorem yields the
expression

Veff(r) = Vext(r) +
e
2

4πε0

ˆ
n(r�)
|r − r�|

dr� +
δExc

δn(r)
(2.7)

for the effective potential and the equations
�
−

�2
2m

∆+ Veff(r)
�
ψi(r) = �iψi(r) (2.8)

for the single-electron wave functions. These equations have to be solved in a
self-consistent manner.

2.5 Relativistic Spin-Current Density Functional Theory

The correct description of the electron including special relativity was given by
Dirac [39] just two years after the Schrödinger equation had been published. For
heavy elements relativistic effects play an important role. Until today, however, the
extension of the original DFT to a fully-relativistic scheme involves several difficulties
concerning the approximation of the exchange-correlation energy. For this reason
fully-relativistic implementations are rare. For an introduction to the topic cf. [40].

The basics of relativistic DFT were developed in the 1970s by Rajagopal [41, 42, 43],
von Barth and Hedin [44] and MacDonald and Vosko [45]. In a fully relativistic
treatment the four-vector current takes over the role of the electron density n(r).
With this change a generalisation of the Hohenberg-Kohn theorem is possible5.

5The uniqueness of the potential is no longer guaranteed in the relativistic case. However, it has
been estimated that the practical consequences of this fact are not significant. For an overview of
the discussion on this complicacy see [46] section 3.4 and references therein.
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In the electrostatic limit, i.e. for a time-independent and purely electrostatic external
potential, the four-vector current can be reduced to its time component as the only
necessary variable, which is essentially the charge density. Instead of a covariant
four-vector notation one can also use the electron density n(r) and the current
j(r) = (jx(r), jy(r), jz(r)). The analogue to eq. (2.3) is then given by

E[n, j] = Ts[n, j] + VH [n]−
1

4πε0

1

2c2

ˆ ˆ
j1(r1) · j2(r2)

|r1 − r2|
dr1dr2 (2.9)

+

ˆ
drn(r)Vext(r) + Exc[n],

i.e. there is an additional term for the current-current contribution. This interaction
term is usually negligible for single molecules, but not necessarily in a solid: it is the
origin of the magnetocrystalline shape anisotropy through the spin-dipolar interaction
it contains. It also explains the magnetic force between two (macroscopic) wires. In
the non-relativistic limit the prefactor6 1/c

2 vanishes, and with it the current-current
contribution.

The Kohn-Sham equations (2.8), effective one-electron Schrödinger equations, now
have to be replaced by Kohn-Sham-Dirac equations, which are effective one-electron
Dirac equations7:

�
cα (p̂ − eAeff(r)) + βmc

2
+ eϕeff(r)I4

�
ψi(r) = �iψi(r). (2.10)

The wave functions ψi (Kohn-Sham orbitals) are now four-component Dirac spinors.
The effective Kohn-Sham scalar and vector potentials ϕeff and Aeff are

ϕeff(r) = ϕext(r) +
e
2

4πε0

ˆ
n(r�)
|r − r�|

dr� +
δExc

δn(r)
, (2.11)

Aeff(r) = Aext(r)−
1

4πε0

1

c2

ˆ
j(r�)

|r − r�|
dr� +

δExc

δj(r)
. (2.12)

The term Aext takes account of an external magnetic field and, accordingly, vanishes
if there is no such external field.

2.6 Relativistic Spin Density Functional Theory

Spin-current DFT brings with it the problem of finding a good approximation for
the exchange-correlation contribution Exc. To solve this problem and, furthermore,
simplify the equations to a scheme more similar to the non-relativistic one, spin-
polarised DFT is often used instead. An overview of the field is given for example in
[47]. Compared to spin-current DFT the orbital currents are neglected here.

6The prefactor 1/c2 = ε0µ0/4π has its origin in the Biot-Savart law.
7The Dirac equation is discussed in chapter 6. In order to clarify the notation etc. it might be

helpful to have a brief look at this chapter beforehand.
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A Gordon decomposition8 of the current density in the absence of a magnetic field
yields

j(r) = jorb(r) +
1

2m
∇× m(r) (2.13)

where jorb is an orbital current, not discussed further here. m(r) is the spin magnet-
isation density. Neglecting the orbital currents jorb the Kohn-Sham-Dirac equations
take the form �

cαp̂ + βmc
2
+

≈
V (r)

�
ψi(r) = �iψi(r), (2.14)

where
≈
V is a 4× 4 matrix given by9:

≈
V (r) = eϕeff(r)I4 − µβΣB(r)

=

�
eϕ(r)I2 − µσB(r) 0

0 eϕ(r)I2 + µσB(r)

�
(2.15)

=:

�
V

a
(r) 0

0 V
d
(r)

�
.

The B field and the scalar potential ϕ can be calculated from the above defined
potentials V

a, V d via

ϕ(r)I2 =
1

2e

�
V

d
(r) + V

a
(r)

�
, (2.16)

σB(r) =
1

2µ

�
V

d
(r)− V

a
(r)

�
. (2.17)

Instead of the electron density n(r) in the non-relativistic case or n(r) and j(r) in
the relativistic spin-current case, now the densities n

↑↑
(r), n↑↓

(r), n↓↑
(r), n↓↓

(r) are
used, defined as

n
αβ

(r) :=
�

i

ϕ
α†
i
(r)ϕβ

i
(r), α, β∈{↑ , ↓}. (2.18)

In the method I implemented ϕ
↑
i

and ϕ
↓
i

are calculated by transforming the resulting
four-vector wave function from the (κ, µ) basis into the (l,ml,ms) basis.

The (physically more intuitive) quantities, electron density n(r) and spin magnetisa-
tion density m(r), can be calculated via

n(r) =

�

α

n
αα

(r) = n
↑↑
(r) + n

↓↓
(r) (2.19)

m(r) =

�

α,β

σαβ
n
αβ

(r) (2.20)

8The Gordon decomposition is a field theoretic method developed by W. Gordon [48], which
allows to separate the current into an outer, orbital term and an inner part, depending on the
internal state of the electron (the spin density term). The book by Strange [49] contains a section
explaining the physics behind this decomposition.

9cf. section 6.3 for details
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where each σ matrix is written as

σ =

�
σ
↑↑

σ
↑↓

σ
↓↑

σ
↓↓

�
. (2.21)

2.7 Exchange-Correlation Energy Functionals

The exchange correlation energy is generally unknown. The simplest approximation
for the non-relativistic case is the local density approximation (LDA):

Exc[n] =

ˆ
n(r)�xc[n(r)]dr (2.22)

where �xc[n] is the exchange correlation energy per electron of a homogeneous electron
gas that has a constant density n. This quantity has to be evaluated only once and
from then on calculating Exc[n] means only evaluating the integral above. For a
homogeneous electron gas the method is exact, but for other systems it often yields
good results, even if their electron density is (globally) strongly inhomogeneous.

An attempt to improve LDA is the generalised gradient approximation (GGA) that
includes also a gradient term. In some cases, however, GGA does not improve the
results but, surprisingly, even worsens them.

In spin-polarised DFT calculations the local spin density approximation (LSD) can
be used10:

Exc[n,m] =

ˆ
n(r)�xc[n(r), |m(r)|]dr. (2.23)

For possible approximations in spin-current DFT see Engel et al. [50]. Apart from
an overview of different relativistic approximations of Exc their accuracy for various
systems is evaluated. However, a reliable approximation for Exc remains a serious
complication in spin-current DFT, also because this quantity plays a more dominant
role here than in non-relativistic DFT. The reason is that the number of electrons in the
core region increases with Z, so that the exchange-correlation contribution to the total
energy also increases. Apart from that, with in increasing density also the electron
momentum increases11. Therefore the speed of the electrons’ motion is high for heavy
elements, meaning that relativistic effects become non-negligible. Consequently, the
exchange-correlation functional accounts for an increasing proportion of the total
energy as the atomic number increases.

10Here the non-collinear approximation is shown. In the collinear approximation the projection of
the spin magnetisation m to a certain axis (usually mz) is used instead of the absolute value |m|.

11To make this plausible consider for example the homogeneous electron gas, where the highest
possible momentum is kF =

�
3π2

n
�1/3, for a given (constant) electron density n.



3 Korringa-Kohn-Rostoker Green Function Method

The KKR method is mostly used to calculate the electronic structure within
the DFT formalism. Originally the method already emerged in the late 1940s
but received only modest attention. It was extended by the Green function
formalism, by incorporating full potentials, by changing the reference system
for higher numerical efficiency (Screened KKR) and by the development of
a fully-relativistic scheme, now making it a powerful electronic structure
tool that is of advantage especially when dealing with systems of broken
translational symmetry. This chapter outlines the main ideas of the multiple
scattering Green function theory, as a context in which to understand the
single-site problem, the focus of this work during the chapters that follow.

3.1 Overview and Historical Development

The Korringa-Kohn-Rostoker (KKR) method for the calculation of the electronic
structure of materials was introduced as a band structure method already in 1947 by
Korringa [8] and in 1954 by Kohn and Rostoker [7]. Accordingly its development
started even earlier than the development of Density Functional Theory (DFT).
However, its full strength became evident only after it was extended to a Green
function method and embedded into the framework of DFT calculations. Good
introductions to the methods are given in [51, 52].

The KKR method itself consists of two steps: first the single scattering problem is
solved, i.e. the problem of one electron scattered at a single potential in free space.
This problem is solved for each scattering potential, i.e. for each atom of the system
under consideration, and its solution is described by the t matrix (cf. section 5.4).
The second step is to solve the multiple scattering problem, which means solving the
equation of one electron scattered at many different potentials. In order to do so,
starting from the single-site scattering solutions, one applies the condition that the
incident wave at each scattering centre has to be equal to the sum of the outgoing
waves from all the other scattering centres. By splitting up the problem into these
two steps one obtains a separation between the potential and structural properties of
the system.

Originally the KKR method was designed for the simpler case of spherical potentials
only. The generalisation to potentials of arbitrary shape [26, 53, 54] was an important
improvement in the method, as the non-spherical contributions play an important
role for systems with reduced symmetry.

Furthermore, even though KKR was originally developed for the Schrödinger equation,
it is possible to formulate it for the Dirac equation, maintaining the structure of the
key equations in the method [31]. This was first done for the spherical case, but
then also for potentials of general shape [30]. Another improvement of the method
was the development of Screened or Tight-Binding KKR. By replacing the free space
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reference system by a system of repulsive potentials, the numerical efficiency of the
method can be strongly improved [55].

3.2 Introduction to Green Function Theory

Green functions form the basis of a technique for solving partial differential equations
(PDE). A detailed examination from a mathematical point of view is given in the
books by Roach [56] or Duffy [57], whereas Economou [58] provides a physicist’s
point of view. The aim of this section is to give an introduction pointing out the main
concepts and properties important within the theory of multiple scattering without
being mathematically completely rigorous.

For our purposes we need inhomogeneous linear first order (in the case of the Dirac
equation) or second order (in the case of the Schrödinger equation) PDE in three (or
four, in the time-dependent case) dimensions. Such a PDE can be expressed by a
differential operator L = L(r, ∂

∂x
,

∂

∂y
,

∂

∂z
,

∂
2

∂x2 ,
∂
2

∂x∂y
, ...,

∂
2

∂z2
) and a source term f(r) as

Lu = f, (3.1)

where u(r) is the (unknown) solution of the PDE and r = (x, y, z). It would be
convenient if one could invert the differential operator and solve the equation directly
as u = L

−1
f . If L is a differential operator, obviously L

−1 has to be an integral
operator. That is exactly the philosophy of the Green function method. By the use
of an auxiliary function G(r, r�), namely the Green function, the integral equation
can be written as

u(r) = L
−1

f(r) =
ˆ

G(r, r�)f(r�)dr. (3.2)

The Green function G is also called the kernel of the integral operator. As it is
generally unknown and also depends on the boundary conditions, the problem of
solving the PDE is transformed into the problem of finding the Green function and
afterwards calculating the integral. However, G does not depend on f , and that is
the main advantage of the method – once the Green function for a certain differential
operator L is known, solving the inhomogeneous equation requires only the evaluation
of an integral.

A useful tool within the Green function theory is the Dirac δ function. As LL
−1

= I,
one may formally write

u(r) = LL
−1

u(r) = L

ˆ
G(r, r�)u(r�)dr� =

ˆ
LG(r, r�)u(r�)dr�. (3.3)

The δ function, which in fact is not a function but a distribution (also called a
generalised function), is defined as the kernel of the integral above, i.e. it fulfils

u(r) =
ˆ

δ(r� − r)u(r�)dr�. (3.4)
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The concept of distributions makes it possible to differentiate (generalised) functions
at points where they are classically not differentiable. For example also the δ function
is the derivative of a function (the Heaviside step function).

From equation (3.3) and the definition of the δ function (3.4) we obtain the relation

u(r) =
ˆ

δ(r� − r)u(r�)dr� =
ˆ

LG(r, r�)u(r�)dr�. (3.5)

Thus, using the δ function, a Green function can formally be defined by the equation

LG(r, r�) = δ(r� − r). (3.6)

With the Green function method we can determine a particular solution u
part of a

non-homogeneous differential equation. The full set of solutions {ui} is then given by
the set of the solutions {u0

i
} of the homogeneous equation Lu = 0, plus the particular

solution, found with the Green function method:

{ui} = {u
part

+ u
0
i }. (3.7)

The differential operator which will first be of interest here is L = ∆ + k
2, where ∆

denotes the Laplace operator ∆ =
∂
2

∂x2 +
∂
2

∂y2
+

∂
2

∂z2
. The corresponding differential

equation is the Helmholtz equation
�
∆+ k

2
�
u = 0 (3.8)

in the case of no source term (i.e. no potential) or, in the general case with a source
term �

∆+ k
2
�
u = f. (3.9)

In the setting we will examine it will be u = ψ and f = V ψ. We will see in chapter 4
how this equation emerges from the physical setting and how to determine its Green
function.

3.3 Green Function and Electron Density

The Schrödinger equation for an electron in a potential (see eq. (4.2)) is an equation
of the form Lu = f (cf. eq. (3.1)) and it can thus be solved using Green functions.
The same applies for the Dirac equation. In that way the calculation of all the
eigenvalues En and corresponding eigenfunctions ψn can be avoided. The Green
function contains all the information that the eigenfunctions contain, in particular
the electron density (see eq. (2.5)) can be calculated as an integral of the Green
function12:

n(r) = −
2

π
Im

ˆ
EF

−∞
G

full
(r, r, z)dz, (3.10)

12This expression holds for non-relativistic calculations and scalar relativistic calculations without
spin-polarisation.
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where the factor 2 arises from the spin degeneracy. Here G
full is the Green function

of the complete system, which is calculated from the single-site Green functions G

as described in the following section 3.4. To increase the numerical efficiency, the
analytical properties of a Green function are used by introducing a complex energy
z = E + iΓ and solving the integral by a contour integration in the upper half of the
complex plane. This avoids the singularities of the Green function on the real axis
and thus leads to accurate results already for low numbers of quadrature points. The
contour runs over all occupied states, i.e. it starts at an energy Eb below the bottom
of the valence band and runs up to the Fermi energy EF . Close to the Fermi energy
the integration mesh should be chosen denser than the rest of the contour, since a
higher accuracy is required here to obtain good results.

3.4 Multiple Scattering

As it is the focus of this work, the single-site problem will be discussed in great detail
in the following chapters. This section will give a short overview on how to proceed
in obtaining the Green function for the full system using multiple scattering theory,
once the single-site Green functions for all sites are known. All equations will be
given for the relativistic case. However, they hold for the non-relativistic case, too,
when replacing the index Λ = (κ, µ) by L = (l,m).

In terms of wave functions ψi at the different sites i the multiple scattering condition
(a detailed mathematical discussion gives [59]) says that the incoming wave at one
site should be equal to the outgoing waves from all the scattering centres. This is
schematically shown in figure 3.1, the corresponding formula is:

ψ
inc
i (r) =

�

j �=i

ψ
sc
j (r). (3.11)

From this condition one can derive a formula for the Green function of the whole system
G

full
(r, r�,W ) from the single-site Green functions at the different sites G

i
(r, r�,W ),

namely13

G
full

(r + Ri
, r� + Rj

,W ) = δijG
i
(r, r�,W ) +

�

Λ

R
i

Λ(r)
�

Λ�

G
ij

ΛΛ�R
j

Λ�(r�), (3.12)

where W denotes the relativistic energy (cf. eq. (8.10)). The formula contains the
wave functions R

i

Λ
of all sites i in an angular momentum basis, that are determined

from the Lippmann-Schwinger equation14 . The wave functions depend on k (or,
equivalently, on the energy W ), however, this dependence is suppressed here to

13Overlined letters, such as R
j
kΛ� , denote left-hand side solutions. For details see chapters 8 and

10.
14cf. eq. (5.12) and eqs. (10.13) to (10.16) for the non-relativistic and relativistic case, respectively
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Figure 3.1: Schematic picture of the multiple scattering condition. (a) An incoming wave

ψ
inc
3 is scattered at the potential V (r + R

3
). The scattered wave strikes the other potentials.

(b) Scattering at the other three potentials yields three scattered waves. Further orders, i.e.

scattering of these waves, will be neglected in this schematic picture. (c) The scattered waves

hit on the potential V (r+R
3
). According to the multiple scattering condition, the incoming

wave for this potential must be equal to the scattered waves from all the other potentials.
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simplify the notation. Furthermore the formula contains the so-called structural Green
functions G

ij

ΛΛ�(W ) that are also k-dependent (or, equivalently, energy-dependent)
expansion coefficients. They can be calculated from the t matrix by the Dyson
equation:

G
ij

ΛΛ� = g
ij

ΛΛ
� +

�

Λ��

�

n

g
in

ΛΛ��

�

Λ���

t
n

Λ��Λ���G
nj

Λ���Λ� . (3.13)

This is a system of linear equations that can be solved e.g. by Gauß elimination.
t
n

ΛΛ� are the single-site t matrices that can be calculated from the wave functions R
i

Λ

(cf. eq. (5.34) in section 5.4 for the non-relativistic case or eq. (10.66) in section
10.4 for the relativistic case, see also [30, 60]). The coefficients g

ij

ΛΛ� are, for fixed
scattering centres, constants independent of the potentials, i.e. they only depend on
the structure of the system under consideration. The index Λ = (κ, µ) denotes the
quantum numbers in an angular momentum basis for the relativistic case (see section
7.5) and has to be replaced by L = (l,m) in the non-relativistic case (see section 4.2).

A detailed derivation of the equations can be found in [26] for the full-potential
Schrödinger case.

3.5 Full Potential

In the original form of the KKR method one could only treat spherical potentials.
Let us first consider the non-relativistic case. The restriction to spherical potential
means that in a potential expansion of the form (cf. sections 5.2 and 5.3)

V (r) =
�

L

VL(r)YL(r̂) (3.14)

only the first component with L = (0, 0) is taken into account. Here r is the
radial coordinate and r̂ = (θ,φ ) denotes the angular coordinates, YL(r̂) are spherical
harmonics15. This simplifies the calculations significantly, as instead of systems of
coupled equations only decoupled single equations have to be solved (see section
10.8 for a detailed discussion in the relativistic case). The equations of the previous
section 3.4 also become simpler when using spherical potentials only.

The generalisation to potentials of arbitrary shape [26], however, showed that the
additional effort for calculations using the full potential scales only linearly with
the number of non-equivalent atoms. As it is important for systems with broken
symmetry, this modest increase in computational effort is totally acceptable and
only in the full-potential scheme KKR shows its full strength in comparison to other
electron structure methods. Such systems include surfaces, impurities in bulk material
or on surfaces, tunnel junctions or interfaces. Also when calculating forces and lattice
relaxations a full-potential treatment is required, as for these problems the spherical
approximation fails completely [10].

15for the definition of spherical harmonics see the digression on page 47
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Whereas in spherical potential calculations the Wigner-Seitz cells are approximated
by spheres, in the full-potential treatment these spheres are replaced by the exact
Wigner-Seitz cells, i.e. by space-filling and non-overlapping cells. This is realised by
convoluting all integrals with shape functions Θ(r). They equal 1 inside a Wigner-
Seitz cell and 0 outside. The shape functions are expanded in spherical harmonics,
just like the potential:

Θ(r) =
�

L

ΘL(r)YL(r̂). (3.15)

This type of expansion will also be applied to the wave functions, thus separating
radial and angular parts of the equations, e.g. of the Lippmann-Schwinger equations.

In the relativistic case the idea remains unchanged. However the potential here is a
4× 4 matrix, expanded in spin spherical harmonics. I derive an expansion for the
potential in section 10.5, based on the hermicity of the 2× 2 sub matrices, which has
the form

V =

�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
v
a

ΛΛ�(r) v
b

ΛΛ�(r)

v
c

ΛΛ�(r) v
d

ΛΛ�(r)

��
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�
. (3.16)

The first matrix has dimensions 4× 2, the middle one 2× 2 and the last one 2× 4,
resulting in a 4× 4 matrix. From the potential expansion I derived an expansion of
the relativistic Lippmann Schwinger equations (section 10.6).

3.6 KKR GF Algorithm

The chapter about the KKR Green function method will be concluded with an
overview of the algorithm. It anticipates many equations from discussions in the
following chapters, so when reading it for the first time it should only be seen as a
rough overview without the need to understand it in full detail. After having further
reading, it might be helpful as a reference for identifying which are the key steps
within the calculation.

1. Starting point of the calculation is the Green function of a free electron
G

0
(r, r�, z), cf. eq. (4.15) or eq. (9.3) for the non-relativistic and the re-

lativistic case, respectively. For this function there is an analytically known
expression.

2. The system is divided into atomic cells and the wave functions for each cell are
calculated from the Lippmann-Schwinger equation, that is eq. (5.12) in the
non-relativistic case or equations (10.13) to (10.16) in the relativistic case, here
shown for the regular right hand side solution:

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r). (3.17)
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Mathematically, one has to solve an integral equation. The method chosen in
this work is by using Chebyshev quadrature and rewriting the integral equation
into a system of linear equations, as explained in chapter 11.

3. After the wave functions are known, the t matrix elements can be calculated.
In the non-relativistic case this is done via eq. (5.34) or in the relativistic case
via:

tΛΛ� =

ˆ
JΛ�(r�)V (r�)RΛ�(r�)dr. (3.18)

4. The coefficients g
ij

ΛΛ� have to be determined, see [26] for the formula and a
derivation. They depend only on the position of the scattering centres, i.e. for
fixed positions they are only energy-dependent.

5. The Dyson equation (cf. eq. (3.13))

G
ij

ΛΛ� = g
ij

ΛΛ� +
�

Λ��

�

n

g
in

ΛΛ��

�

Λ���

t
n

Λ��Λ���G
nj

Λ���Λ� (3.19)

for the structural Green functions Gij

ΛΛ� has to be solved. It is a system of linear
equations that can be solved by standard methods.

6. The single-site Green function is also calculated from the wave-functions via eq.
(10.19)

G(r, r�,W ) = Θ (r
�
− r)

�

Λ

RΛ(r)SΛ(r�) + Θ (r − r
�
)

�

Λ

SΛ(r)RΛ(r�) (3.20)

for the relativistic case. For the non-relativistic case the same equation holds,
except for changing the index Λ to L and using the non-relativistic wave
functions instead.

7. The last step is the calculation of the Green function for the full system

G
full

(r+Ri
, r�+Rj

,W ) = δijG
i
(r, r�,W )+

�

Λ

R
i

Λ(r)
�

Λ�

G
ij

ΛΛ�R
j

Λ�(r�) (3.21)

(cf. eq. (3.12)). This Green function contains the whole information, in
particular it can be used to calculate the electron density via eq. (3.10).
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Non-Relativistic Single-Site Scattering



4 Free Particle Green Function

The Green function of an electron moving freely without the influence of
a potential plays an important role in the KKR theory. This is due to the
fact that the free electron is the reference system used for calculating the
Green function of the electron with the influence of a potential later on. The
free space Green function can be calculated analytically, and in an angular
momentum basis it can be expressed through the free space wave functions
in this basis.

4.1 Derivation

As the Green function plays a vital role in multiple scattering methods, this function
shall be calculated for the non-relativistic electron, i.e one that is moving at a speed
which is small compared to the speed of light. The wave function ψ of such an
electron is described by the (stationary) Schrödinger equation

�
−

�2
2m

∆+ V (r)
�
ψ(r) = Eψ(r), (4.1)

where m is the electron mass, � the Planck constant, V (r) a scattering potential and
E the energy. This equation can be rewritten as

�2
2m

�
∆+ k

2
�
ψ(r)=V(r)ψ(r), (4.2)

where k is defined by �2k2/2m := E. It is helpful to consider first the problem of
a free electron without any scattering potential – not only because this is easier
to tackle but also because the result will be needed in future calculations of Green
functions. In this case of a free electron the right hand side of the integral vanishes
and what is left is the homogeneous differential equation

�2
2m

�
∆+ k

2
�
ψ(r) = 0 (4.3)

which we recognise as the Helmholtz equation. The solutions of this equation for a
given energy E are all the plane waves ψk(r) = e

ikr fulfilling �2k2/2m = E. The
corresponding Green function is defined by

�2
2m

�
∆+ k

2
�
G

0
nr(r, r

�
;E) = δ(r − r�) (4.4)

with the index nr indicating that it is the non-relativistic Green function. Here a
third argument or parameter E is introduced to the Green function, to point out
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that it depends on the energy. To solve the equation, one can start from the integral
representation of the Dirac δ function

δ(r − r�) =
1

(2π)³

ˆ
e
iq(r−r�)

dq. (4.5)

Inserting this into the definition of the Green function and bringing the differential
operator to the other side of the equation yields

G
0
nr(r, r

�
;E) =

2m

�2
�
∆+ k

2
�−1 1

(2π)³

ˆ
e
iq(r−r�)

dq (4.6)

=
2m

�2
1

(2π)³

ˆ �
∆+ k

2
�−1

e
iq(r−r�)

dq. (4.7)

Since
�
∆+ k

2
� eiq(r−r�)

k2 − q2
= e

iq(r−r�)
, (4.8)

as it can directly be verified by performing the differentiation, one obtains

G
0
nr(r, r

�
;E) =

2m

�2
1

(2π)³

ˆ
e
iq(r−r�)

k2 − q2
dq. (4.9)

The integral can first be rewritten into spherical coordinates. Defining x := r − r�
and choosing the coordinate system in x-direction, i.e. x = xex, one can simplify
e
iq(r−r�)

= e
iqx cos θ, so that

G
0
nr(r, r

�
;E) =

2m

�2
1

(2π)³

ˆ
2π

0

dφ

ˆ
π

0

dθ

ˆ ∞

0
q
2
sin θ

e
iqx cos(θ)

k2 − q2
dq (4.10)

=
2m

�2
1

(2π)2

ˆ
π

0

dθ

ˆ ∞

0
q
2
sin θ

e
iqx cos(θ)

k2 − q2
dq

=
2m

�2
1

(2π)2ix

ˆ ∞

0
q
e
iqx − e

−iqx

k2 − q2
dq

=
2m

�2
1

(2π)2ix

�ˆ ∞

0
q

e
iqx

k2 − q2
dq +

ˆ
0

-∞
q

e
iqx

k2 − q2
dq

�

=
2m

�2
1

(2π)2ix

ˆ ∞

-∞
q

e
iqx

(k − q) (k + q)
dq.

The resulting integral has poles for q = k and q = −k, both of order 1. Its value is
therefore undefined unless a certain path of integration is specified. If we remember
the previous section, where it was pointed out that the Green function depends on
the boundary conditions, this makes sense – because so far we did not specify the
boundary conditions. We will first choose a closed integration path γ with the pole
at k lying within the path.
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Digression: Residue Theorem

Let f be an analytic function (locally representable by a power
series) within a simply-connected domain G except for isolated
singular points. Then:

ˆ
γ

f(z)dz = 2πi

N�

l=1

res[f(z); al]

where γ is a closed, rectifiable (“piece-wise smooth”) curve in G

which does not intersect the singularities of f , and ak, k = 1, ..., N

are the singular points within γ. The residue is

res[f(z), a] =
1

(m− 1)!
lim
z→a

�
d
m−1

dzm−1
(z − a)

m
f(z)

�

for a pole of order m.

Using the residue theorem the integral can be solved:

G
0+
nr (r, r

�
;E) =

2m

�2
1

(2π)2ix
· 2πi

1�

l=1

res

�
q

e
iqx

(k − q) (k + q)
, al

�
, (4.11)

where a1 = k and

res

�
q

e
iqx

k2 − q2
, a1

�
=

1

0!
lim
q→k

�
(q − k)q

e
iqx

(k − q) (k + q)

�
(4.12)

= lim
q→k

q

(k + q)
e
iqx

= −
1

2
e
ikx

,

thus
G

0+
nr (r, r

�
;E) = −

2m

�2
1

4πx
e
ikx

. (4.13)

Choosing a different integration path γ which contains the pole q = −k and not q = k

and performing an analogue calculation yields

G
0−
nr (r, r

�
;E) = −

2m

�2
1

4πx
e
−ikx

. (4.14)

These two Green functions obviously have a different behaviour for x → ∞. Thus
the boundary conditions imposed on the Green function determine the value of the
– otherwise undefined – integral which was seen in its calculation. There is also a
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physical interpretation of these boundary conditions: G0+
nr describes an outgoing wave

whereas G0−
nr is an incoming wave. Here G

0
nr := G

0+
nr is the function we are interested

in. In short:

The Green function corresponding to the outgoing wave of a non-relativistic free
electron is given by

G
0
nr(r, r

�
;E) = −

2m

�2
e
ik|r−r�|

4π|r − r�|
. (4.15)

4.2 Angular Momentum Expansion

For calculations later on the angular momentum expansion of the Green function will
be important. The reason being, that by writing down angular momentum expansions
for all the relevant equations it will be possible to separate the problem and solve the
sub-problems for different values of l and m.

Let us start by recalling the partial wave expansion of a plane wave: For a spherically
symmetric scattering potential V (r) = V (r) states of different angular momentum
are scattered independently. It is therefore convenient to expand the wave in terms
of superposed partial waves with different angular momentum. This expansion shall
not be derived here but just be stated:

e
ik·r

= e
ikr cos(θ)

=

∞�

l=0

i
l
(2l + 1)jl(kr)Pl(cos θ) (4.16)

= 4π

∞�

l,m

i
l
Y

∗
l,m

(k̂)Yl,m(r̂)jl(kr)

= 4π

�

L

i
l
Y

∗
L (k̂)YL(r̂)jl(kr).

In the last step a combined index L := (l,m) was introduced to simplify the notation
and r̂ = (φ,θ ) denotes the direction of the vector r. Now let us look at the functions
jl, Pl and Yl,m in some short mathematical digressions. First an overview of Bessel
and Hankel functions:
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Digression: Bessel and Hankel functions

Bessel’s differential equation

x
2 d

2
y

dx2
+ x

dy

dx
+ (x

2
− n

2
)y = 0,

where n can be an arbitrary complex number (but in the cases of
interest here will be an integer) has as solutions the Bessel functions.
If n is not an integer, two linearly independent solutions are given
by Jn and J−n, where

Jn(x) :=

∞�

r=0

(−1)
r
(
x

2
)
2r+n

Γ(n+ r + 1)r!
.

These functions are also called the Bessel functions of first kind. In
contrast, if n is an integer the two solutions are given by Jn and
another function Nn which is called a Bessel function of second
kind or also a Weber or a Neumann function:

Nn(x) := lim
p→n

Jp(x) cos(pπ)− J−p(x)

sin(pπ)
.

Both sets of functions can alternatively be defined using integrals
of trigonometric functions. They form a basis for the vector space
of the solution of the differential equation. An alternative basis is
given by the Hankel functions

H
(±)
n (x) := Jn(x)± iNn(x).
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For the partial wave expansion of a plane wave and also for the expansion of the
Green function, the so-called spherical Bessel functions are needed. Thus a quick
overview of those as well:

Digression: Spherical Bessel functions

When examining the free movement of a particle with a given
angular momentum, one has to solve the Helmholtz equation

�
∆+ k

2
�
ψ=0.

Separation of variables eventually yields the following radial part:

x
2 d

2
y

dx2
+ 2x

dy

dx
+ [x

2
− l(l + 1)]y = 0.

Two linearly independent solutions are the spherical Bessel and
spherical Neumann functions:

jl(x) :=

�
π

2x
Jl+1/2(x)=(−x)

l

�
1

x

d

dx

�l
sinx

x
,

nl(x) :=
�

π

2x
Yl+1/2(x) = −(−x)

l

�
1

x

d

dx

�l
cosx

x
.

Two different linearly independent solutions are given by the spher-
ical Hankel functions:

h
(1)

l
(x) := jl(x) + inl(x)

h
(2)

l
(x) := jl(x)− inl(x).

The Bessel function vanishes as x → 0 if l ≥ 1 and is called the
regular solution. The Neumann and Hankel functions diverge and
are called irregular solutions. Here only the function h

(1)

l
is of

interest, thus the definition hl := h
(1)

l
will be used throughout this

work.

And finally the Legendre polynomials and spherical harmonics:
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Digression: Legendre Polynomials and Spherical Harmonics

The Legendre polynomials are given by

Pn(x) =
1

2nn!

d
n

dxn
[(x

2
− 1)

n
].

They are solutions of Legendre’s differential equation. Moreover,
there is also a general Legendre equation, which is solved by the
associated Legendre polynomials:

Pl,m(x) =
(−1)

m

2ll!
(1− x

2
)
m/2 d

l+m

dxl+m
(x

2
− 1)

l
.

They are also used to define complex spherical harmonics:

Yl,m(θ,φ ) = N e
imφ

Pl,|m|(cos θ).

N is a normalisation constant given by N = Al,|m|Cm (Condon-
Shortley convention) where

Al,|m| =

�
2l + 1

4π

(l − |m|)!

(l + |m|)!

Cm = i
m+|m|

=

�
1, m ≤ 0 orm even

−1, m > 0 andm odd.

The spherical harmonics are a set of solutions of the angular part
of the Laplace equation. They fulfil the orthonormality relation

ˆ
2π

0

dφ

ˆ
π

0

sin θdθY l,m(θ,φ )Y
∗
l�,m�(θ,φ ) = δll�δmm�

and the completeness relation

∞�

l=0

l�

m=−l

Yl,m(θ,φ )Y
∗
l,m

(θ
�
, φ

�
) =

1

sin θ
δ(θ − θ

�
)δ(φ− φ

�
).

As a consequence, any complex square-integrable function can be
expressed in terms of complex spherical harmonics:

f(θ,φ ) =

∞�

l=0

l�

m=−l

fl,mYl,m(θ,φ ) =

�

L

fLYL(r̂).

Here L := (l,m) and r̂ = (θ,φ ) are defined.
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The starting point is to derive the expansion of the integral formula for the Green
function (4.9), which can be rewritten as

G
0
nr(r, r

�
, E) =

2m

�2
1

(2π)³

ˆ
1

k2 − q2
e
iqr

e
−iqr�

dq. (4.17)

Now insert the partial wave expansion of the plane wave eq. (4.16) into this expression,
yielding G

0
nr(r, r�, E) =

2m

�2
1

(2π)³

ˆ
1

k2 − q2

�
4π

�

L

i
l
Y

∗
L (q̂)YL(r̂)jl(qr)

��
4π

�

L�

(−i)
l�
YL�(q̂)Y

∗
L�(r̂

�
)jl�(qr

�
)

�
dq.

(4.18)

This expression can be rearranged and rewritten into spherical coordinates, remem-
bering that r̂ = (θr, φr) and q̂ = (θq, φq) represent the angular part in spherical
coordinates of r̂ and q̂ respectively: G

0
nr(r, r�, E)=

2m

�2
2

π

�

L,L�

i
l
(−i)

l
�
YL(r̂)Y ∗

L�(r̂�)
ˆ

jl(qr)jl�(qr
�
)

k2 − q2
Y

∗
L (q̂)YL�(q̂)dq (4.19)

=
2m

�2
2

π

�

L,L�

�
i
l
(−i)

l
�
YL(r̂)Y ∗

L�(r̂�)
�ˆ

π

0

dθ

ˆ
2π

0
dφ sin θY

∗
L (q̂)YL�(q̂)

�

·

�ˆ ∞

0

dq
q
2
jl(qr)jl�(qr

�
)

k2 − q2

��
.

Inserting the orthonormality relation for spherical harmonics as stated in the digression
on the preceding page and, furthermore, using i

l
(−i)

l
�
δL,L� = i

l
(−i)

l
= 1 for L = L

�,
one obtains

G
0
nr(r, r

�
, E) =

2m

�2
2

π

�

L

�
YL(r̂)Y ∗

L (r̂
�
)

�ˆ ∞

0

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq

��
(4.20)

=
2m

�2
1

π

�

L

�
YL(r̂)Y ∗

L (r̂
�
)

�ˆ ∞

−∞

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq

��
.

The last step uses the fact, that the integrand is an even function. That can easily
be verified by inserting into the definition of the spherical Bessel functions

jl(−x) = x
l

�
1

(−x)

d

d (−x)

�l
sin(−x)

(−x)
= x

l

�
1

x

d

dx

�l
sin(x)

x
= (−1)

l
jl(x) (4.21)

and noting that (−1)
2l
= 1. We proceed making the following definition:

G
0

nr,l
(r, r

�
, E) :=

1

π

ˆ ∞

−∞

q
2
jl(qr)jl(qr

�
)

k2 − q2
dq. (4.22)

This integral has to be solved by contour integration in the complex plane, again
using the residue theorem. However, because jl(qr)jl�(qr

�
) does not vanish along a



32 4 Free Particle Green Function

semi circle in the upper half plane, the expression has to be rewritten into spherical
Hankel functions and different cases have to be taken care of. The necessary steps
can be found in [61]. The result is given by

G
0

nr,l
(r, r

�
, E) = −ikjl(kr<)hl(kr>), (4.23)

where r< := min{r, r�} and r> := max{r, r�}. Furthermore defining

JkL(r) := jl(kr)YL(r̂), (4.24)
JkL(r) := jl(kr)Y

∗
L (r̂), (4.25)

HkL(r) := hl(kr)YL(r̂) and (4.26)
HkL(r) := hl(kr)Y

∗
L (r̂), (4.27)

the final result for the Green function is obtained:

G
0
nr(r, r

�
, E) =

2m

�2
�

L

YL(r̂)Y ∗
L (r̂

�
)G

0

nr,l
(r, r

�
, E) (4.28)

= −ik
2m

�2
�

L

YL(r̂)Y ∗
L (r̂

�
)jl(kr<)hl(kr>)

= −ik
2m

�2
�

L

�
Θ(r − r

�
)HkL(r)JkL(r�) + Θ (r

�
− r)JkL(r)HkL(r�)

�

This important result in short16:

The partial wave expansion of the non-relativistic free electron Green function is
given by

G
0
nr(r, r

�
, E) = −ik

2m

�2
�

L

�
Θ(r − r

�
)HkL(r)JkL(r�) + Θ (r

�
− r)JkL(r)HkL(r�)

�
.

(4.29)

16Remark: when using real spherical harmonics instead of the (“normal”) complex ones used here,
the functions JkL and JkL are identical, the same holds for HkL and HkL. Hence, in that case
the equation can be written in a more compact form. However, in the relativistic case that is not
possible any more. Therefore, the form above is instructive inasmuch as it has exactly the same
structure as the relativistic free particle Green function will have.
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The Lippmann-Schwinger Equation is a reformulation of the Schrödinger
equation (or later the Dirac equation) into an integral equation, derived
by exploiting Green function theory. The integral equation contains the
free space Green function, calculated in the previous chapter. From the
Lippmann-Schwinger equation the solutions for the wave functions become
accessible.

5.1 Derivation

Up to now only the case of a free electron has been examined. The Lippmann-
Schwinger equation connects this free electron case with the general case, i.e. with the
solution of the Schrödinger equation (4.2) for a particle (electron) under the influence
of a potential V . Basically, it is nothing more than a general equation from Green
function theory applied to the Schrödinger equation, namely the equation (3.2) that
we first used to define a Green function. In the physical notation of the Schrödinger
equation setting this equation is rewritten as

ψ
partc

(r) = L
−1

V (r)ψpartc
(r) =

ˆ
G

0
nr(r, r

�
;E)V (r�)ψpartc

(r�)dr�. (5.1)

However, a complication here arises from the fact that the source term V ψ itself
contains the function ψ that we are looking for. Therefore, even after having found
the Green function, the problem in this case consists not only of solving an integral
but an integral equation.

As the notation ψ
partc already suggests, this is the particular solution, i.e. one out

of many possible solutions of the inhomogeneous equation. According to the theory
of differential equations, the general solution ψ of the inhomogeneous equation is
given by the sum of the particular solution ψ

partc with the set of all solutions of the
homogeneous equation {ψ0

k
}:

ψk = ψ
partc

+ ψ
0

k (5.2)

The latter, as already mentioned, are all the plane waves

ψ
0

k(r) = e
ikr

. (5.3)

fulfilling the energy relation �2k2/2m = E. So we obtain the general solution:
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The general solution of the Schrödinger equation for a particle (electron) under the
influence of a potential, is given by the Lippmann-Schwinger equation:

ψk(r) = ψ
0

k(r) +
ˆ

G
0
nr(r, r

�
;E)V (r�)ψk(r�)dr�, (5.4)

where ψ
0

k(r) = e
ikr, �2k2/2m = E and G

0
nr is given by eq. (4.29).

5.2 Angular Momentum Expansion

The next aim is to derive an angular momentum expansion of the Lippmann-Schwinger
equation. In equation (4.16) we already saw the partial wave expansion of a plane
wave, which we want to apply on ψ

0

k here. We first define

ψ
0

kL
(r) := YL(r̂)jl(kr) (5.5)

to obtain

ψ
0

k(r) = e
ikr

= 4π

�

L

i
l
Y

∗
L (k̂)YL(r̂)jl(kr) (5.6)

= 4π

�

L

i
l
Y

∗
L (k̂)ψ

0

kL
(r). (5.7)

We then expand the solution ψk in a analogue manner

ψk(r) = 4π

�

L

i
l
Y

∗
L (k̂)ψkL(r) (5.8)

but with unknown functions ψkL. Inserting (5.6) and (5.8) into the Lippmann-
Schwinger equation (5.4), multiplying by YL�(k̂), integrating over k̂ and using the
orthonormality of the spherical harmonics

´
Y

∗
L
(k̂)YL�(k̂)dk̂ = δLL� we obtain the

following equation:

�

L

i
l
ψkL(r)δLL� =

�

L

i
l

�
ψ
0

kL
(r) +

ˆ
G

0
nr(r, r

�
;E)V (r�)ψkL(r�)dr�

�
δLL� (5.9)

which is equivalent to

ψkL(r) = ψ
0

kL
(r) +

ˆ
G

0
nr(r, r

�
;E)V (r�)ψkL(r�)dr�. (5.10)

Thus we can summarise:
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The angular momentum expansion of the wave function ψk for a particle (electron)
in a potential V is given by

ψk(r) = 4π

�

L

i
l
Y

∗
L (k̂)ψkL(r) (5.11)

where YL are (complex) spherical harmonics and ψkL are determined by a Lippmann-
Schwinger type equation

ψkL(r) = ψ
0

kL
(r) +

ˆ
G

0
nr(r, r

�
;E)V (r�)ψkL(r�)dr�. (5.12)

For this Lippmann-Schwinger equation there are two types of solutions, the regular
and the irregular ones. The regular solutions RkL are the ones that are not singular
for r = 0, whereas the irregular ones SkL diverge as r goes to zero. Furthermore, for
both of those solution there is a right-hand side solution and a left hand-hand side
solution. In the Lippmann-Schwinger equation this difference is taken account for by
choosing a different source term out of eqs. (4.24) to (4.27). The regular solutions
are defined as follows:

The Lippmann-Schwinger equations for the regular wave functions RkL (right-hand
side solution) and RkL (left-hand side solution) are given by

RkL(r) = JkL(r) +
ˆ

G
0
nr(r, r

�
;E)V (r�)RkL(r�)dr� (5.13)

RkL(r) = JkL(r) +
ˆ

G
0
nr(r, r

�
;E)V (r�)RkL(r�)dr�. (5.14)

The free space solutions JkL and JkL are defined by eqs. (4.24) and (4.25).

The source term of a Bessel function is chosen because the Bessel functions are regular
at the origin. For the irregular solutions it will be Hankel functions instead, see eqs.
(5.73) and (5.74).

5.3 Coupled Radial Equations

The Lippmann-Schwinger equations can be rewritten into radial equations, i.e. equa-
tions where the angular part is separated and the equation contains a one-dimensional
radial integral only instead of the three dimensional integration of the previous section.
The price for this simplification is that the resulting equations have double indices
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and form a system of coupled17 equations. The derivation here will be shown for
the regular right-hand side solution, however, the results are analogous for the other
solutions.

We start from eq. (5.13), expand RkL and V in terms of spherical harmonics and use
the angular momentum expansion of the Green function (4.28):

V (r�) =

�

L

VL(r
�
)YL(r̂�) (5.15)

RkL(r) =

�

L�

RL�L(r)YL�(r̂) (5.16)

G
0
nr(r, r

�
, E) =

2m

�2
�

L

YL(r̂)Y ∗
L (r̂�)G

0

nr,l
(r, r

�
, E) (5.17)

Inserting the expansions into eq. (5.13) yields:

�

L���

RL���L(r)YL���(r̂) = jl(kr)YL(r̂)

+
2m

�2

ˆ ��
�

L���

YL���(r̂)Y ∗
L���(r̂�)G0

nr,l���(r, r
�
, E)

�

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�
(5.18)

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

The next step is a multiplication by Y
*
L�(r̂), then integrating over r̂ and using the

orthonormality, i.e.
´
Y

*
L�(r̂)YL(r̂)dr̂ = δLL� :

�

L���

RL���L(r)δL�L��� = jl(kr)δLL� +
2m

�2

ˆ ��
�

L���

δL�L���Y
∗
L���(r̂�)G0

nr,l���(r, r
�
, E)

�

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�
(5.19)

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

17In the case of a spherical potential they decouple, as shown for the relativistic case in section
10.8.
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Computing the sums over Kronecker δ yields:

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ ��
Y

∗
L�(r̂�)G0

nr,l�(r, r
�
, E)

�
(5.20)

·

�
�

L����

VL����(r
�
)YL����(r̂�)

�

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

��
dr�.

Using the relationship dr := r
2
sin(θ)dφdθdr = r

2
drdr̂ the integral is rewritten into

spherical coordinates:

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E) (5.21)

·

ˆ
dr̂�Y ∗

L�(r̂�)

�
�

L����

VL����(r
�
)YL����(r̂�)

�

·

�
�

L��

RL��L(r
�
)YL��(r̂�)

�
,

where S denotes the radius of a sphere outside of which the potential vanishes. This
can be rewritten as

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E) (5.22)

·

�

L��L����

ˆ
dr̂�

�
Y

∗
L�(r̂�)YL����(r̂�)YL��(r̂�)

�

� �� �
=:CL�

L��L����

�
VL����(r

�
)RL��L(r

�
)
�

and by defining

VL�L��(r
�
) =

�

L����

C
L
�

L��L����VL����(r
�
) (5.23)

we can further simplify to obtain

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E)

�

L��

VL�L��(r
�
)RL��L(r

�
). (5.24)

The result and the necessary definitions summarised:
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The regular solution of the angular momentum Lippmann-Schwinger type equation is
given by

RkL(r) =
�

L�

RL�L(r)YL�(r̂) (5.25)

where

RL�L(r) = jl(kr)δLL� +
2m

�2

ˆ
S

0
dr

�
r
�2
G

0

nr,l�(r, r
�
, E)

�

L��

VL�L��(r
�
)RL��L(r

�
), (5.26)

VL�L��(r
�
) =

�

L���

C
L
�

L��L���VL���(r
�
) and (5.27)

C
L
�

L��L��� =

ˆ
dr̂�Y ∗

L�(r̂�)YL���(r̂�)YL��(r̂�). (5.28)

The coefficients C
L
�

L��L��� are called Gaunt coefficients.

5.4 t Matrix

The t matrix18 describes the transition between the incoming plane waves and the
scattered waves. Therefore is interesting for to its physical meaning, but it will also
be helpful later on to simplify the notation. A derivation of the expression for a full
potential has been shown by Zeller [26].

Starting point is the angular momentum Lippmann-Schwinger equation for RkL

(5.13):

RkL(r) = jl(kr)YL(r̂) +
ˆ

G
0
nr(r, r

�
;E)V (r�)RkL(r�)dr�. (5.29)

Into this equation we insert the angular momentum expansion of the Green function
(4.28)

G
0
nr(r, r

�
, E) =

2m

�2
�

L�

YL�(r̂)Y ∗
L�(r̂�)G0

nr,l�(r, r
�
, E), (5.30)

obtaining

RkL(r) = jl�(kr)YL�(r̂) +
2m

�2

ˆ �
�

L�

YL�(r̂)Y ∗
L�(r̂�)G0

nr,l�(r, r
�
, E)

�
V (r�)RkL(r�)dr�.

(5.31)
Using expression (4.23) for the coefficients

G
0

nr,l�(r, r
�
, E) = −ikjl�(kr<)hl�(kr>) (5.32)

18The t matrix is closely related to the S matrix (where the S stands for scattering), first introduced
by Wheeler [62].



5.5 Radial Equations in PDE Formulation 39

for the case r > r
�
> S ⇐⇒ r< = r

�
, r> = r, this equation can be rewritten as

RkL(r) = jl�(kr)YL�(r̂)

−ik
2m

�2
�

L�

�ˆ
Y

∗
L�(r̂�)jl�(kr�)V (r�)RkL(r�)dr�

�
YL�(r̂)hl�(kr)

= jl�(kr)YL�(r̂)− ik
2m

�2
�

L�

tL�LYL�(r̂)hl�(kr)

= JkL�(r)− ik
2m

�2
�

L�

tL�LHkL�(r) (5.33)

where we defined

tLL� : =

ˆ
Y

∗
L (r̂

�
)jl(kr

�
)V (r�)RkL�(r�)dr�.

=

ˆ
JkL(r�)V (r�)RkL(r�)dr�. (5.34)

The integration volume is the whole unity cell under consideration. Alternatively
the t matrix can be written in such a manner that it only contains a radial integral.
To derive this expression we compare the t matrix with equation (5.20), observing
that the expression for the t matrix “almost” turns up in this equation – the only
difference is that there is the function G

0

nr,l
instead of jl. By following exactly the

same steps as from eq. (5.20) up to eq. (5.24), that means by making an expansion
in spherical harmonics and using the Gaunt coefficients, we can derive the alternative
expression for the t matrix:

tLL� =

ˆ
S

0
dr

�
r
�2
jl�(kr

�
)

�

L��

VL�L��(r
�
)RL��L(r

�
). (5.35)

A physical interpretation of the t matrix can be made looking at eq. (5.33): Incoming
waves are represented in a basis of Bessel functions jl (as their radial parts), with
a dependence on the angular momentum quantum number l. These functions are
regular at the origin, which is the centre of the scattering potential V . Outgoing
waves are written in a basis of Hankel functions (that are irregular in the origin).
The vector of Hankel functions is multiplied by the t matrix, in this way the matrix
determines how incoming waves are scattered at the potential V . In case of a spherical
potential the t matrix is diagonal, i.e. it has non-zero entries only for L = L

�. This
means that incoming waves with angular momentum quantum numbers l,m are only
scattered to waves of the same angular momentum l,m and there is no mixing of the
angular momentum channels as it is the case for potentials of arbitrary shape.

5.5 Radial Equations in PDE Formulation

Instead of using integral equations of Lippmann-Schwinger type it is also possible
to find a system of differential equations for the radial solutions of the Schrödinger
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equation. This technique is not used within this work and will not be studied beyond
this section, however, to give an idea of alternative solution techniques that are
used to solve the radial equations, it should be mentioned here. As for the case of
integral equations, the expansion parts ψkL and VLL� for different values of the angular
momentum L are coupled, only in the case of a spherical potential the equations can
be solved independently.

First we rewrite the Schrödinger equation into spherical coordinates. This can be
done by using the Laplace operator in spherical coordinates (see eq. [63]) and the
angular momentum operator L̂ = −i�r ×∇, yielding:

�
−

�2
2m

∆+ V (r)
�
ψk(r) = Eψk(r)

⇐⇒

�
−

1

r2

∂

∂r

�
r
2 ∂

∂r

�
+

1

�2r2 L̂
2

+
2m

�2 V (r)− k
2

�
ψk(r) = 0. (5.36)

As before �2k2/2m = E. The spherical harmonics are the eigenfunctions of L̂
2

(see
e.g. [64] or another book on quantum mechanics):

L̂
2

YL(r̂) = �2l(l + 1)YL(r̂). (5.37)

Since the first part of the operator in the Schrödinger equation depends only on r

and the angular momentum operator L̂ depends only on the angular part r̂ = (θ,φ ),
the strategy to solve the equation is by separating the variables in the wave function.
This is done by using the expansion (5.16) in terms of spherical harmonics. The
potential is expanded in an analogous way as in (5.15):

V (r) =

�

L���

VL���(r)YL���(r̂) (5.38)

ψkL�(r) =

�

L��

ψkL��L�(r)YL��(r̂). (5.39)

We insert this into the Schrödinger equation, obtaining
��

−
1

r2

∂

∂r

�
r
2 ∂

∂r

�
+

2m

�2

�
�

L���

VL���(r)YL���(r̂)

�
− k

2

�
+

1

�2r2 L̂
2

�
(5.40)

·

�
�

L��

ψkL��L�(r)YL��(r̂)

�
= 0

This can be rearranged to

�

L��

�
−

1

r2

∂

∂r

�
r
2 ∂

∂r

�
+

1

�2r2 L̂
2

− k
2

�
ψkL��L�(r)YL��(r̂)

+
2m

�2
�

L��

�

L���

VL���(r)YL���(r̂)ψkL��L�(r)YL��(r̂) = 0. (5.41)
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Now we use the eigenvalue equation (5.37), multiply the whole equation by Y
∗
L
(r̂) and

integrate over r̂. Using the orthonormality of the spherical harmonics, this gives us

�

L��

��
−

1

r2

∂

∂r

�
r
2 ∂

∂r

�
+

l(l + 1)

r2
− k

2

�
ψkL��L�(r)δLL��

�

+
2m

�2
�

L��

�

L���

�ˆ
dr̂Y ∗

L (r̂)YL��(r̂)YL���(r̂)
�

� �� �
=C

L
L��L���

VL���(r)ψkL��L�(r) = 0, (5.42)

where the coefficients C
L

L��L��� are the Gaunt coefficients already defined in eq. (5.22).
By using the definition of VL��L as in eq. (5.23) the equation can further be simplified:

�
−

1

r2

∂

∂r

�
r
2 ∂

∂r

�
+

l(l + 1)

r2
− k

2

�
ψkLL�(r)

+
2m

�2
�

L��

�

L���

C
L

L��L���VL���(r)

� �� �
=VL��L

ψkL��L�(r) = 0 (5.43)

Finally, we obtain the coupled equations for the radial part of the wave function:

�
1

r2

∂

∂r

�
r
2 ∂

∂r

�
−

l(l + 1)

r2
+ k

2

�
ψkLL�(r) =

2m

�2
�

L��

VL��LψkL��L�(r). (5.44)

5.6 Operator Notation and Integral Equations for the Green Func-
tion

The Green function formalism and the Lippmann-Schwinger equation can also be
expressed using an operator notation. It shortens the notation for calculating an
integral equation for the Green function.

The free particle Green function was defined by eq. (4.1) and the following ones:

(E +∆ )ψ(r) = 0 (5.45)
(E +∆ )G

0
nr(r, r

�
, E) = δ(r − r�). (5.46)

For the particle in a potential V the corresponding Green function is analogously
defined by

(E +∆− V )Gnr(r, r�, E) = δ(r − r�). (5.47)
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Now this equation can be expressed as an operator equation by defining the operators
Ĝ

0
nr, Ĥ0

nr and Ĥnr acting on a twice differentiable function f as:

Ĝ
0
nrf :=

ˆ
dr�Gnr(r, r

�
, E)f(r�) (5.48)

Ĥ
0
nrf := −∆f(r) (5.49)

Ĥnrf := (−∆+ V (r)) f(r). (5.50)

Using these definitions and integrating equation (5.46) over r�, it can be rewritten
into ˆ

dr� (E +∆ )G
0
nr(r, r

�
, E) =

ˆ
dr�δ(r − r�)

⇐⇒

�
E − Ĥ

0
nr

�
Ĝ

0
nr = 1. (5.51)

From this relation one can formally conclude

Ĝ
0
nr =

�
E − Ĥ

0
nr

�−1

. (5.52)

An analogous procedure for eq. (5.47) yields
�
E − Ĥnr

�
Ĝnr = 1, (5.53)

Ĝnr =

�
E − Ĥnr

�−1

=

�
E − Ĥ

0
nr − V

�−1

. (5.54)

Multiplying eq. (5.54) from the left by
�
E − Ĥ

0
nr − V

�
yields an operator represent-

ation of the Lippmann-Schwinger equation for the Green function:
�
E − Ĥ

0
nr − V

�
Ĝnr = 1

⇐⇒

�
E − Ĥ

0
nr

�

� �� �
=(Ĝ0

nr)
−1

Ĝnr = 1 + V Ĝnr

⇐⇒ Ĝnr = Ĝ
0
nr + Ĝ

0
nrV Ĝnr. (5.55)

By using the definition of the operators the equation can be rewritten into a real
space integral equation:

ˆ
dr�Gnr(r, r

�
, E)f(r�) (5.56)

=

ˆ
dr�G0

nr(r, r
�
, E)f(r�) +

ˆ
dr��G0

nr(r, r
��
, E)V (r��)

ˆ
dr�Gnr(r

��
, r�, E)f(r�),

valid for any twice differentiable function f . Formally one obtains the integral equation
for the Green function:
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Gnr(r, r
�
, E) = G

0
nr(r, r

�
, E) +

ˆ
dr��G0

nr(r, r
��
, E)V (r��)Gnr(r

��
, r�, E) (5.57)

Multiplying eq. (5.54) from the right by the same factor as in eq. (5.55) gives:

Ĝnr = Ĝ
0
nr + ĜnrV Ĝ

0
nr, (5.58)

which, in real space, yields the integral equation

Gnr(r, r
�
, E) = G

0
nr(r, r

�
, E) +

ˆ
dr��Gnr(r, r

��
, E)V (r��)G0

nr(r
��
, r�, E). (5.59)

5.7 Fredholm and Volterra Integral Equations

During the derivation of the Green function for the particle in a potential, it will be
useful to rewrite between two different types of integral equations, the Fredholm and
the Volterra integral equation.

A Fredholm integral equation has the form19

y(r) = f(r) +
ˆ

dr�G0
(r, r�)V (r�)y(r�). (5.60)

For f �= 0 it is called inhomogeneous or of second kind. The integration domain in
this case is finite and does not depend on r. G

0 is called the kernel of the integral, y
is an unknown function and f , G0and V are given.

One can directly see that the Lippmann-Schwinger equation is of this form, and
therefore is a Fredholm integral equation.

The strategy for solving a Fredholm equation is by finding a resolvent kernel G, such
that the unknown function y can be written as

y(r) = f(r) +
ˆ

dr�G(r, r�)V (r�)f(r�). (5.61)

The relationship between G and G
0 can be found using the operator notation exactly

as it has been done in the previous section 5.6. Simply renaming the functions in the
19In the general form in Mathematics the term V (r�) is not included. It can, however, simply

be included by redefining G
0. In the form presented here the analogy to the Lippmann-Schwinger

equation is directly obvious, which is why V (r�) has been included.
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Lippmann-Schwinger equation (5.4) and in the resulting equations (5.57) and (5.59)
we get the equations

G(r, r�) = G
0
(r, r�) +

ˆ
dr��G0

(r, r��)V (r��)G(r��, r�), (5.62)

G(r, r�) = G
0
(r, r�) +

ˆ
dr��G(r, r��)V (r��)G0

(r��, r�). (5.63)

A Volterra integral equation is of the same form as a Fredholm equation, with the
only difference that the integral domain depends on r. In this three-dimensional
setting this can be written as

y(r) = f(r) +
ˆ

dr�K0
(r, r�)V (r�)f(r�) (5.64)

where

K
0
(r, r�) = Θ (r − r

�
)K̃

0
(r, r�). (5.65)

That means the integration domain is limited to a sphere of radius |r|. The equations
for finding the integral kernel still hold, i.e. a solution of the Volterra equation is
given by

y(r) = f(r) +
ˆ

dr�K(r, r�)V (r�)f(r�) (5.66)

where

K(r, r�) = K
0
(r, r�) +

ˆ
dr��K0

(r, r��)V (r��)K(r��, r�). (5.67)

For the calculation of the Green function it will be of advantage to rewrite the
Lippmann-Schwinger equation from a Fredholm to a Volterra equation. How to do
this will be explained in sections 10.3 and 10.9.

5.8 α and β Matrices and the Irregular Solution

The α matrix describes the behaviour at the origin of the regular angular single-site
solutions with potential, RkL(r), and without potential, JkL(r).

The relationship between the two was given by equation (5.13):

RkL(r) = JkL(r) +
ˆ

dr�G0
nr(r, r

�
;E)V (r�)RkL(r�). (5.68)

Inserting the partial wave expansion of the free space Green function, eq. (4.29), one
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gets

RkL(r) = JkL(r)− ik
2m

�2
�

L�

�ˆ
dr�Θ(r − r

�
)HkL�(r)JkL�(r�) (5.69)

+Θ(r
�
− r)JkL�(r)HkL�(r�)

�
V (r�)RkL(r�)

= JkL(r)− ik
2m

�2

��

L�

ˆ
|r�|≤|r|

dr�HkL�(r)JkL�(r�)V (r�)RkL(r�)

+

ˆ
|r�|>|r|

dr�JkL�(r)HkL�(r�)V (r�)RkL(r�)
�
.

In the limit |r| → 0 the first integral vanishes, yielding

RkL(r) = JkL(r)− ik
2m

�2
�

L�

JkL�(r)
ˆ
|r�|>|r|

dr�HkL�(r�)V (r�)RkL(r�) (5.70)

=

�

L�

JkL�(r)

�
δLL� − ik

2m

�2

ˆ
|r�|>|r|

dr�HkL�(r�)V (r�)RkL(r�)

�

� �� �
=:αLL�

, as |r| → 0.

Hence20

RkL(r) =
�

L�

αLL�JkL�(r), as |r| → 0, (5.71)

where the α matrix was defined by

αLL� := δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)RkL(r). (5.72)

As it has been seen in the expansion eq. (4.15), the non-relativistic free electron
Green function can be written in terms of the regular and irregular solutions of the
free Schrödinger equation. The goal later on will be finding a similar expansion for
the Green function of an electron in a potential, i.e. in terms of regular and irregular
solutions of the Dirac equation of an electron in a potential. This equation should,
however, result in the equation for the free electron Green function when choosing
V = 0. From eq. (5.68) one can see that RkL = JkL for V = 0. Similarly, the
irregular solution, denoted by SkL, should be equal to the irregular solution of the free
electron case, the Hankel function HkL. Hence, the source term of the corresponding
Lippmann-Schwinger equation is no longer a Bessel but now a Hankel function:

20Note that both α and β matrix have a dependence on k that is not indicated here explicitly.
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The irregular solutions SkL(r) of a particle in a potential are given by the Lippmann-
Schwinger equations

SkL(r) =
�

L�

βLL�HkL�(r) +
ˆ

dr�G0
nr(r, r

�
, E)V (r�)SkL(r�), (5.73)

SkL(r) =
�

L�

βLL�HkL�(r) +
ˆ

dr�G0
nr(r, r

�
, E)V (r�)SkL(r�). (5.74)

The source terms are defined in eqs. (4.26) and (4.27). Furthermore the β matrix is
used, which is defined by its entries

βLL� := δLL� + ik
2m

�2

ˆ
drSkL�(r)V (r)JkL(r). (5.75)

In addition to the source term now being a Hankel function, there occurs, unexpectedly,
also the multiplication by the β matrix. First note that for the case of a vanishing
potential this matrix becomes the identity matrix, i.e. for V = 0 it is SkL = HkL as
it was required. As a source term any linear combination of Hankel functions can
be used. Why the β matrix is introduced here and why this specific source term is
chosen cannot be understood yet but only when deriving the expansion of the Green
function in sections 5.9 and 10.3. There it will be seen that with this choice for the
irregular solution the Green function for the particle in a potential can be written in
a nice and simple form.

The equation for the irregular solution is a Fredholm integral equation. Thus,
according to section 5.7, the solution is given by

SkL(r) =
�

L�

βLL�

�
HkL�(r) +

ˆ
drGnr(r, r�, E)V (r�)HkL(r�)

�
. (5.76)

SkL(r) =
�

L�

βLL�

�
HkL�(r) +

ˆ
drHkL(r�)V (r�)Gnr(r�, r, E)

�
. (5.77)

In a matrix notation the two matrices are given by

α = (αLL�)
LL� , (5.78)

β = (βLL�)
LL� ∈ C(n+1)

2×(n+1)
2

. (5.79)

If l runs from 0 to n and m ∈{− l,−(l − 1), . . . , l} the combined index L = (l,m)

can take (n+ 1)
2 values, hence this is the dimension of the matrix. One can also
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define the vectors S, H and A ∈ C(n+1)2 by

S(r) =
�
SkL(r)

�
L
, (5.80)

H(r) =
�
HkL(r)

�
L
, (5.81)

A(r) =

�ˆ
dr�HkL(r�)V (r�)Gnr(r�, r, E)

�

L

, (5.82)

i.e. they are column vectors containing the entries for different values of L. Using
these definitions, equation (5.76) can then be written in a the compact form

S(r) = β
�
H(r) +A(r)

�
. (5.83)

Even though it is not obvious to see, the α and β matrices are the inverse of each
other:

The matrices α and β fulfil the relation

α = β
−1

. (5.84)

Proof: Recall the Lippmann-Schwinger equation for the regular solution eq. (5.13):

RkL(r) = JkL(r) +
ˆ

dr�G0
nr(r, r

�
;E)V (r�)RkL(r�) (5.85)

According to section 5.7 its solution is

RkL(r) = JkL(r) +
ˆ

dr�Gnr(r, r�;E)V (r�)JkL(r�). (5.86)

Now insert this into the definition of the α matrix, eq. (5.72), to obtain

αL�L = δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r) (5.87)

·

�
JkL(r) +

ˆ
dr�Gnr(r, r�;E)V (r�)JkL(r�)

�

= δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)JkL(r)

−ik
2m

�2

ˆ
dr�

�ˆ
drHkL�(r)Gnr(r, r�;E)V (r)

�
V (r�)JkL(r�).

Equation (5.83) can be rearranged as

A(r) = β
−1

S(r)−H(r) (5.88)
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which, in explicit notation, is equivalent to
ˆ

dr�HkL(r�)Gnr(r, r�, E)V (r�) =
�

L�

�
β
−1

�
LL� SkL�(r)−HkL(r). (5.89)

This is exactly the term in square brackets in the equation above. Replacing it yields

αLL� = δLL� − ik
2m

�2

ˆ
drHkL�(r)V (r)JkL(r) (5.90)

−ik
2m

�2

ˆ
dr�

�
�

L��

�
β
−1

�
LL�� SkL��(r�)−HkL�(r�)

�
V (r�)JkL(r�)

= δLL� −
�

L�

�
β
−1

�
LL� ik

2m

�2

ˆ
dr�SkL�(r�)V (r�)JkL(r�)

� �� �
=βLL�−δLL� , cf. eq. (5.75)

.

This equation can equivalently be written in a matrix notation

α = I− β
−1

(β − I) = β
−1

, (5.91)

where I denotes the identity matrix. From this equation follows the claim eq. (5.84),
which completes the proof.

5.9 Angular Momentum Expansion of the Green function for a
Particle in a Potential

In analogy to the angular momentum expansion of the free particle Green function
(cf. eq. (4.28))

G
0
nr(r, r

�
, E) = −ik

2m

�2
�

L

JL(kr<)HL(kr>) (5.92)

the Green function a the particle in a potential can also be expanded. However,
the spherical Bessel and Hankel functions JL and HL will here be replaced by the
regular and irregular solutions of the Schrödinger equation for a particle in a potential.
Thus, once these solutions are known, the Green function can be calculated from the
expansion.

The non-relativistic Green function for a particle in a potential is given by

Gnr(r, r�;E) = −ik
2m

�2
�

L

�
Θ(r − r

�
)RL(r�)SL(r�) + Θ (r

�
− r)SL(r�)RL(r�)

�

(5.93)
with the regular wave functions RΛ, RΛ, defined by eqs. (5.13) and (5.14), whereas
the irregular wave functions SΛ, SΛ are defined by eqs. (5.73) and (5.74).
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In section 10.3 it will be shown that an equation of the same form is valid in the
relativistic case (cf. eq. (10.19)), together with a proof for the relativistic case. For the
non-relativistic case this proof goes completely analogously, except for two differences:
the first one is that here some functions are scalar, that will be vectors or matrices
in the relativistic case. Hence in the relativistic case the order of multiplications
matters, while in the non-relativistic case it does not. The second difference is that
the indices L will be replaced by different indices Λ. As by replacing the indices the
proof for the relativistic case can be adopted, no proof is given here.
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Part III

Relativistic Single-Site Scattering



6 Dirac Equation

For an electron with a high kinetic energy the Schrödinger equation does no
longer provide an adequate description, but the Dirac equation has to be
used instead. It was already found two years after the Schrödinger equation
was published and, using vectors with four entries, describes the motion of a
spin 1/2 particle in accordance to special relativity.

6.1 Relativistic Quantum Mechanics

In 1905 Einstein published his theory of special relativity [65], as it was later on
termed. In contrast to the Galilean relativity, which explains the equivalence of
all inertial systems of uniform, linear motion with one universal time, the time in
special relativity is no longer universal for all reference systems. The first experiment
connected to special relativity was the Michelson-Morley experiment, conducted
already in 1881. It aimed to find a medium in which light waves travel. However, no
such medium and, accordingly, no distinguished inertial system was found. Einstein’s
special relativity explained the unexpected result of the experiment. As an important
consequence of the theory, the vacuum light speed c must be finite.

In a mathematical description, a theory in accordance with Galilean relativity must
be invariant under a Galilean transformation between two inertial systems. Newton’s
Laws, for example, are invariant under such a transformation. The relativistic
counterpart is a Lorentz transformation, i.e. a theory in accordance with special
relativity must be covariant, which means invariant under a Lorentz transformation.
This transformation was part of Einstein’s publication and also solved the problem
that the Maxwell equations were not invariant under a Galilean transformation.

The Schrödinger equation, published in 1926, is not invariant under a Lorentz
transformation and thus not in accordance with special relativity. Hence, the search
for a relativistic equivalent started directly after Schrödinger’s publication. An
attempt to describe the relativistic movement of an electron was the Klein-Gordon
equation, that was published in 1927. It turned out that this equation does not
correctly describe relativistic electrons, however, it is correct for the description of
relativistic Bosons. Dirac’s publication in 1928 [39] solved the problem of describing
relativistic electrons.

In the non-relativistic limit of small electron speed v � c the Schrödinger equation
correctly describes the electronic motion. With increasing energy and, accordingly,
increasing speed of motion, relativistic properties become important. Consequences
of the Dirac equation include negative energies, that were explained by Dirac by
introducing antiparticles with opposite energy [66], also known as the hole theory.
This theory furthermore allows, in accordance to the equivalence of energy and mass
in special relativity, the annihilation and creation of particles, which means that the
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number of particles no longer is a conserved quantity. In contrast to the Schrödinger
equation, it is also able to correctly describe all interaction processes between light
and matter, such as emission and absorption or scattering of photons. Moreover,
it includes the spin of an electron in the theory. This intrinsic angular momentum
couples with the orbital angular momentum, known as spin-orbit coupling. It becomes
more and more important with increasing atomic number, as for heavy elements
the electrons have a higher energy and thus move faster. There are several good
introductory books to relativistic quantum mechanics [64, 67, 68, 69, 70, 71], whereas
the books by Strange [49] and Rose [72] go further into the details and also treat
aspects that are important in solid state physics.

6.2 The Free Electron

The relativistic description of an electron in free space is given by the Dirac equation

Ĥ0Ψ = i�∂Ψ
∂t

(6.1)

with the Dirac Hamiltonian

Ĥ0 : =
�c
i

�
α1

∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3

�
+ βmc

2 (6.2)

= cαp̂ + βmc
2 (6.3)

and
p̂ = −i�∇. (6.4)

In the stationary case eq. (6.1) becomes

Ĥ0ψ = Wψ, (6.5)

where W denotes the energy eigenvalue in the relativistic case. The quantities αi and
β are 4× 4 matrices defined as

β =

�
I2 0

0 −I2

�
, αi =

�
0 σi

σi 0

�
(6.6)

where i ∈ {x, y, z} is the cartesian coordinate and σi are the 2× 2 Pauli matrices

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σx =

�
1 0

0 −1

�
. (6.7)

α is a vector that contains the three matrices αi as its entries. In contrast to the
Schrödinger equation, which is a linear second order differential equation, the Dirac
equation is a linear first order differential equation. However, according to the general
theory of linear differential equations, any second order equation can be written
as a coupled system of two first order equations. As the Dirac equation contains
vectors with four entries and 4× 4 matrices it can be seen as a system of four coupled
equations, thus resolving this at first sight surprising difference to the Schrödinger
equation.



54 6 Dirac Equation

6.3 Electron in a Potential

To include a scalar potential eϕ(r) and an electromagnetic vector potential A(r) in
the Dirac equation, the following replacements are necessary (see e.g. [71]):

i� ∂

∂t
−→ i� ∂

∂t
− eϕ(r) (6.8)

or for the stationary case
W −→ W − eϕ(r) (6.9)

and
p̂ −→ p̂ − eA(r). (6.10)

Therefore the Dirac Hamiltonian becomes

ĤD = cα (p̂ − eA(r)) + βmc
2
+ eϕ(r)

= cαp̂ + βmc
2
+ V (r) (6.11)

where the potential V (r) is a 4× 4 matrix defined by

V (r) : = eϕ(r)I4 − ceαA(r) (6.12)

= e

�
ϕ(r)I2 −cσA(r)

−cσA(r) ϕ(r)I2

�

= e





ϕ(r) 0 −cAz(r) −cAx(r) + icAy(r)
0 ϕ(r) −cAx(r)− icAy(r) +cAz(r)

−cAz(r) −cAx(r) + icAy(r) ϕ(r) 0

−cAx(r)− icAy(r) +cAz(r) 0 ϕ(r)



 .

Assuming that ϕ and A have only real entries, this matrix is self-adjoint (Hermitian),
i.e.

V (r) = V
†
(r). (6.13)

Density functional calculations using this potential are called Spin-Current DFT.
Usually the potential is approximated neglecting orbital currents (see e.g. [70]) and
written in the following representation:
≈
V (r) : = eϕ(r)I4 − µβΣB(r) (6.14)

=

�
eϕ(r)I2 − µσB(r) 0

0 eϕ(r)I2 + µσB(r)

�

=





eϕ(r)− µBz(r) −µBx(r) + iµBy(r) 0 0
−µBx(r)− iµBy(r) eϕ(r) + µBz(r) 0 0

0 0 eϕ(r) + µBz(r) µBx(r)− iµBy(r)
0 0 µBx(r) + iµBy(r) eϕ(r)− µBz(r)





where
Σ =

�
σ 0

0 σ

�
(6.15)

and where B is the magnetic flux density and

µ =
e�
2m

. (6.16)
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Density functional calculations using this potential are called spin-polarised DFT.
Just as the exact potential V , assuming that ϕ and B have real entries only, the
approximated potential

≈
V is also a self-adjoint matrix:

≈
V (r) =

≈
V

†
(r). (6.17)

6.4 Relativistic Corrections to the Schrödinger Equation

The wave functions resulting from the Dirac equation have four entries. The first
two are commonly termed the large component, the remaining two the small com-
ponent. In the Dirac equation, which is a system of four linear first-order differential
equations, both components are coupled. By applying a so-called Foldy-Wouthuysen
transformation of the Dirac Hamiltonian and neglecting the small component, one
can derive the Pauli operator :

ĤPauli =
p̂2

2m
+ eϕ(r)

� �� �
ĤSchrödinger

−
e�
2m

σ · B
� �� �

(1)

−
p̂
4

8m3c2� �� �
(2)

+
e�2

8m2c2
∇ · E

� �� �
(3)

−
e�

4m2c2
σ · (E × p̂)

� �� �
(4)

.

(6.18)
This operator is applied only to the large component. The first term of the Pauli
operator is equal to the Schrödinger Hamiltonian, followed by relativistic correction
terms up to order O(1/c

2
). Hence, the Pauli operator provides a way to include

relativistic effects in otherwise non-relativistic calculations. The Dirac equation, of
course, intrinsically contains all these terms (and more), so that the Pauli operator
is not used anywhere within this work. It is however instructive in order to gain
understanding for what are the main relativistic effects:

1. The first correction term describes the magnetic moment µ = −e�/2mσ
resulting from the electron spin. It gives rise, for example, to the dipole-
dipole interaction of electrons, which is one factor contributing to magnetic
shape anisotropy and magnetocrystalline anisotropy (the other one is spin-orbit
coupling, cf. point 4).

2. With increasing speed the relativistic mass increases and differs more and more
from the rest mass. The second correction term is the first contribution to this
mass increase.

3. This correction in known as the Darwin term. It describes the fact that in a
relativistic description one can only give a probability for finding an electron at
a certain position. The fine structure correction in the description of Hydrogen
is an example of the effect the Darwin term has.

4. The last term is called the spin-orbit coupling term, that is the main source of
various relativistic effects in solid state physics, including the magnetic shape
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anisotropy mentioned above. More examples are listed in the introduction. For
regions where the potential is in a good approximation spherical, i.e. close to
the atom core, the spin-orbit contribution can be approximated [11, 73] by

ĤSO =
e�

4m2c2
σ · (E × p) ≈ ξ(r)L̂ · Ŝ. (6.19)

Here ξ(r) is the spin-orbit coupling constant, L̂ is the orbital angular momentum
operator and Ŝ is the spin operator. In the following chapter these operators
and their eigenfunctions and eigenvalues will be discussed in detail.



7 Angular Momentum Operators, Eigenvalues and Ei-

genfunctions

Angular momentum expansions form an indispensable tool within the KKR-
GF formalism. Whereas in the non-relativistic case spherical harmonics are
used as a basis, now the so-called spin spherical harmonics take over this role.
They are the eigenfunctions of the spin-orbit operator K̂. To characterise the
states one has the choice between two different basis sets, the (κ, µ)-basis
and the (l,ml,ms)-basis. Explicit tables of the indices in the two basis
sets, Clebsch-Gordan coefficients and the first spin spherical harmonics are
presented as a groundwork for computational implementation.

7.1 Orbital Angular Momentum Operator

The orbital angular momentum operator L̂ is defined by

L̂ = r × p̂ (7.1)

where p̂ = −i�∇ is the momentum operator. L̂ fulfils the commutation relations
�
L̂x, L̂y

�
= i�L̂z (7.2)

�
L̂y, L̂z

�
= i�L̂x

�
L̂z, L̂x

�
= i�L̂y.

Using these relations, the cross-product of L̂ with itself can be calculated:

L̂ × L̂ =




L̂yL̂z − L̂zL̂y

L̂zL̂x − L̂xL̂z

L̂xL̂y − L̂yL̂x



 =





�
L̂y, L̂z

�

�
L̂z, L̂x

�

�
L̂x, L̂y

�




=




i�L̂x

i�L̂y

i�L̂z



 = i�L̂. (7.3)

The eigenfunctions of the squared orbital angular momentum operator and its z-
component are spherical harmonics:

L̂
2

Yl,m(θ,φ ) = �2l(l + 1)Yl,m(θ,φ ) (7.4)
L̂zYl,m(θ,φ ) = �mYl,m(θ,φ ). (7.5)

The angular versions of the creation and annihilation operators

L̂+ := L̂x + iL̂y (7.6)
L̂− := L̂x − iL̂y (7.7)
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allow going from one m state to another:

L̂+Yl,m =

��
l(l + 1)−m(m+ 1)Yl,m+1 if m < l

0 otherwise
(7.8)

L̂−Yl,m =

��
l(l + 1)−m(m− 1)Yl,m−1 if m > −l

0 otherwise.
(7.9)

7.2 Spin Operator

The spin, experimentally observed in experiments of atoms in magnetic fields (Zeeman
effect, Stern-Gerlach experiment), emerges from the Dirac equation as a new (rota-
tional) degree of freedom compared to the Schrödinger equation. It can be described
by the spin operator, which is defined as

Ŝ :=
�
2
σ (7.10)

where σ is a vector containing the Pauli matrices σx, σy and σz, which are given by

σx =

�
0 1

1 0

�
, σy =

�
0 −i

i 0

�
, σz =

�
1 0

0 −1

�
. (7.11)

For electrons, i.e. spin 1/2 particles, the operator fulfils the eigenvalue equations

Ŝ
2

φms = �2s(s+ 1)φms (7.12)
Ŝzφms = �msφms (7.13)

where s = 1/2, ms = ±s and the eigenfunctions φms are the spinors

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (7.14)

The Pauli matrices have the following properties:

σ
2
i = I2 (7.15)

σxσy = iσz and cyclic permutations (7.16)
σxσy = −σyσx and cyclic permutations (7.17)

σxσyσz = iI2. (7.18)

From these properties follows a general relation, valid for all commuting vector
operators Â and B̂:

�

i,j

σiÂiσjB̂j =

�

i,j

δijÂiB̂j + i

�

i,j,k

�ijkσkÂiB̂j (7.19)

⇐⇒ (σÂ)(σB̂) = ÂB̂ + iσ(Â × B̂) (7.20)
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The first line follows from the relation σiσj = δij +
�

k
i�ijkσk (here �ikj denotes the

Levi-Civita symbol) which is equivalent to equations (7.15) and (7.16), the second
line is just rewriting it using the sum notations for the scalar product and the cross
product.

The spin operator Ŝ fulfils
�
Ŝx, Ŝy

�
= i�Ŝz and cyclic permutations. (7.21)

In analogy to the case of the orbital angular momentum in section 7.1, this implies

Ŝ × Ŝ = i�Ŝ. (7.22)

We also note
�
Ŝ, L̂

�
=

�
2




σxL̂x − L̂xσx

σyL̂y − L̂yσy

σzL̂z − L̂zσz



 = 0. (7.23)

7.3 Total Angular Momentum Operator

In the Schrödinger theory the angular momentum L is equivalent to the total an-
gular momentum. This is different in the relativistic case, where the total angular
momentum is the sum of the orbital angular momentum and the spin. In operator
notation:

Ĵ = L̂ + Ŝ. (7.24)

This sum of two operators has to be understood as the direct product of the cor-
responding quantum states, see eq. (7.50). The eigenvalues of Ĵ

2

are given by
j(j + 1), where j is a non-negative half-integer, and those of Ĵz = L̂z + Ŝz are given
by µ := m+ms, where m = −l, ..., l and ms = ±s = ±

1

2
.

The eigenfunctions of this operator will be discussed in section 7.5.

7.4 Spin-Orbit Operator

7.4.1 The Dirac Hamiltonian in Spin-Orbit Operator Notation

Our aim here is to separate radial and angular parts of the Dirac Hamiltonian. This
will later on allow us to apply the separation of variables onto the Dirac equation
when calculating its eigenfunctions.

We will first rewrite the momentum operator p̂. The following identity holds:

er × (er × p̂) Graßmann identity
= er(erp̂)− (erer)p̂ = er(erp̂)− p̂. (7.25)
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Rearranging and using the definition of the unit vector er = r/r and of the angular
momentum operator L̂ = r × p̂ yields

p̂ = er(erp̂)−er× (er × p̂) = er(erp̂)−
1

r
er× (r × p̂) = er(erp̂)−

1

r
er× L̂. (7.26)

Hence
σp̂ = (σer)(erp̂)−

1

r
σ(er × L̂). (7.27)

Now we define
σr := σer (7.28)

and note that the term erp̂ is the directional derivative

erp̂ = −i�er∇ = −i� ∂

∂r
. (7.29)

Hence equation (7.27) becomes

σp̂ = −i�σr
∂

∂r
−

1

r
σ(er × L̂). (7.30)

To rewrite the term er× L̂ the vector er and the operator L̂ are inserted into equation
(7.20), which yields:

(σer)(σL̂) = erL̂ + iσ(er × L̂). (7.31)

Since the cross product L̂ = r× p̂ is perpendicular to r and thus also to er, the term
erL̂ equals zero. Now, inserting eq. (7.31) into (7.30) gives

σp̂ = −i�σr
∂

∂r
−

1

ir
σrσL̂

= −i�σr
∂

∂r
+ i

1

r
σrσL̂ (7.32)

= −iσr

�
� ∂

∂r
−

1

r
σL̂

�
.

By defining the

spin-orbit operator
K̂ := −

�
�+ σL̂

�
(7.33)

the expression for σp̂ is rewritten as

σp̂ = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
. (7.34)
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Therefore

αp̂ = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

��
0 I2
I2 0

�
. (7.35)

Using this expression, the Dirac Hamiltonian for a free electron can be rewritten as

ĤD = −ciσr

�
� ∂

∂r
+

�
r
+

K̂

r

��
0 I2
I2 0

�
+ βmc

2
. (7.36)

7.4.2 Eigenvalues of the Spin-Orbit Operator

The eigenvalues of the spin-orbit operator K̂ are convenient to characterise the states
of a free relativistic particle. To calculate them we first evaluate K̂

2
:

K̂
2
= �2 + 2�σL̂ + (σL̂)(σL̂). (7.37)

Now we rewrite

(σL̂)(σL̂)
eq. (7.20)

= L̂
2

+ iσ(L̂ × L̂) (7.38)
eq. (7.3)
= L̂

2

− �σL̂.

Inserting this into the expression for K̂
2 yields

K̂
2
= �2 + �σL̂ + L̂

2

(7.39)

and hence
K̂

2
+ �K̂ = L̂

2

. (7.40)

We denote the eigenvalues of K̂ by �κ, i.e. the eigenvalue equation is

K̂χΛ = �κχΛ, (7.41)

where χΛ denote the eigenfunctions and Λ is a combined index Λ = (κ, µ). Then
from eq. (7.40) follows

�2κ2 + �2κ = �2l(l + 1) (7.42)

because L̂
2

has eigenvalues �2l(l + 1). This means

κ(κ+ 1) = l(l + 1) (7.43)

which implies the two solutions κ = l or κ = −(l + 1). The next step is to link these
two solutions to the eigenvalues of the total angular momentum operator Ĵ. First we
note

Ĵ
2

− L̂
2

− Ŝ
2

=

�
L̂ + Ŝ

�2

− L̂
2

− Ŝ
2

= L̂Ŝ + ŜL̂
eq. (7.23)

= 2ŜL̂. (7.44)
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Hence
σL̂

eq. (7.10)
=

2

� ŜL̂ =
1

�

�
Ĵ
2

− L̂
2

− Ŝ
2
�
. (7.45)

Inserting this into the definition of the spin-orbit operator yields

K̂ = −

�
�+ σL̂

�
= −

�
�+

1

�

�
Ĵ
2

− L̂
2

− Ŝ
2
��

. (7.46)

For its eigenvalues follows therefore

�κ = − (�+ �j(j + 1)− �l(l + 1)− �s(s+ 1)) . (7.47)

As for electrons the spin eigenvalue is s =
1

2
, it can further be simplified to

κ = −

�
j(j + 1)− l(l + 1) +

1

4

�
. (7.48)

Inserting κ = l, the first solution we found for κ, into this equation yields j = l− 1/2.

If the second solution κ = −(l + 1) is inserted, the relation j = l + 1/2 is obtained.
Therefore we get the final result for the eigenvalues of K̂:

κ =

�
l, if j = l −

1

2

−l − 1, if j = l +
1

2
.

(7.49)

7.5 Spin Spherical Harmonics

This section introduces the so-called spin spherical harmonics, which are the eigenfunc-
tions of the spin-orbit operator K̂. Furthermore, the angular momentum expansion
in different basis sets is discussed, namely in the (l,ml,ms)-basis and the (κ, µ)-basis.

The definition of the spin spherical harmonics can be found in e.g. [69], [72] or [74],
here they will be defined in 7.60.

A quantum state in the non-relativistic case is fully specified by the quantum numbers
l and m, or by the combined index L = (l,m). l(l + 1) is the value of the squared
orbital angular momentum vector L2 and m is its z-component. We can denote the
state in Dirac notation as |l,m�.

In the relativistic case a further angular momentum occurs, the spin angular mo-
mentum s. Since it is always s = 1/2, there is only one additional degree of freedom,
the z-component of the spin, which is determined by ms = ±1/2. To avoid confusion,
we will rename m to ml in the relativistic case. Thus a state is now characterised by
four quantum numbers: |l,ml, s,ms�, out of which one is fixed (s = 1/2). This state
can be written as the product of the orbital angular momentum state and the spin
angular momentum state:
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|l,ml, s,ms� = |l,ml� ⊗ |s,ms� . (7.50)
This product in an explicit representation is the product of (scalar) spherical harmonics
Yl,ml

with spinors φms :

|l,ml, s,ms� = Yl,ml
(r̂)φms (7.51)

where the spinors are given by

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (7.52)

The number of states up to a maximal l-value lcut is given by

number of states = 2 · (lcut + 1)
2
. (7.53)

Table 7.2a shows the 32 (= 2 ·
�
3 + 1

2
�
) possible states up to lcut = 3.

For a given orbital angular momentum L and a given spin S the total angular
momentum is defined by

J = L + S. (7.54)
One can calculate that the z-components of L̂ and Ŝ , given by the operators L̂z

and Ŝz with eigenvalues ml and ms, are no longer “good” quantum numbers in the
case of this spin-orbit coupling, in the sense that these operators do not commute
with the Dirac Hamiltonian ĤD. However the z-component of the combined angular
momentum, given by the operator Ĵz = L̂z + Ŝz, does commute with ĤD. The
eigenvalue of Ĵz is denoted by µ, and obviously it is

µ := mj = ml +ms = ml ±
1

2
. (7.55)

As an alternative to using the quantum numbers defining a state as |l,ml, s,ms�,
one can also define a state |j, l, s, µ�. This defines a different basis (the (κ,µ)-basis,
as we will see later on). To go from one representation to the other, one has to
calculate a linear combination of the states with suitable coefficients. Going from
(l,ml, s,ms)-representation to (j, l, s, µ)-representation, it has the form:

|j, l, s, µ� =

�

ms=± 1
2

C(j, µ, l, s|ml,ms) |l,ml, s,ms� . (7.56)

As only values for µ = ml +ms are allowed, the coefficients have to vanish for any
other combination.
Now it turns out, that the eigenvalue κ of the spin-orbit operator K̂, contains exactly
the same information as j and l together. That means if κ is given, j and l can be
calculated from it21

j = l −
1

2
sign(κ) = l ±

1

2
(7.57)

l =

�
κ, if j = l −

1

2
⇔ κ > 0

−κ− 1, if j = l +
1

2
⇔ κ < 0,

(7.58)

21Note that the expression j = l± 1
2 here means j = l+ s, where s = ± 1

2 . It is not equal to l+ms.
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and on the other hand, if j and l are given, κ can be calculated:

κ =

�
l, if j = l −

1

2

−l − 1, if j = l +
1

2
.

(7.59)

Thus it is completely equivalent to use the notation |j, l, s, µ� or |κ, s, µ�. As it is
always s = 1/2 this quantum number is usually omitted, and the states are named
|j, l, µ� or |κ, µ� in the case of the total angular momentum basis or |l,ml,ms� for
the former basis. The total angular momentum representation is normally called
the (κ, µ)-representation. The following table shows how to calculate within this
representation:

l j = l ± 1/2 κ

0 1/2 -1
1 1/2 1

3/2 -2
2 3/2 2

5/2 -3
3 5/2 3

7/2 -4

Now we need an explicit expression for the basis functions |κ, µ�. Equation (7.56)
already gives a definition, and in an explicit notation it is

χΛ(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Yl,µ−ms(r̂)φms (7.60)

where Λ = (κ, µ) = (j, l, µ) is the combined index for the relativistic quantum numbers.
These functions are called spin spherical harmonics. The coefficients C that occur
here are called Clebsch-Gordan coefficients and are given by:

C(l, j,
1

2
|ml,ms) ms = 1/2 ms = −1/2

j = l + 1/2

�
l+µ+

1
2

2l+1

�
l−µ+

1
2

2l+1

j = l − 1/2 -
�

l−µ+
1
2

2l+1

�
l+µ+

1
2

2l+1

Clebsch-Gordan coefficients are always needed when adding angular momenta. For
details on how to calculate them see e.g. [64] or [72].

Furthermore one defines

Λ = : (−κ, µ) (7.61)

l =

�
κ− 1 if κ > 0

−κ if κ < 0
(7.62)
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and

χ
Λ
(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Yl,µ−ms

(r̂)φms . (7.63)

One can show that the spin spherical harmonics are the eigenfunctions of the spin-orbit
operator:

K̂χΛ(r̂) = �κχΛ(r̂). (7.64)
K̂χ

Λ
(r̂) = −�κχ

Λ
(r̂). (7.65)

For a given quantum number j the quantum number µ fulfils

|l − s| ≤ µ ≤ l + s (7.66)

where s = 1/2. The number of states up to a certain value of l is the same in the
(κ, µ)-basis as it was in the (l,ml,ms)-basis, given by eq. (7.53). An explicit overview
of the allowed values up to lcut = 3 is given in table 7.2b.

The Clebsch-Gordan coefficients fulfil the following orthonormality properties (see
e.g. [49] section 2.10):

�

j

C(l, j,
1

2
|µ−ms,ms)C(l, j,

1

2
|µ

�
−m

�
s,m

�
s) = δmsm

�
s
δµµ� (7.67)

�

ms

C(l, j,
1

2
|µ−ms,ms)C(l, j

�
,
1

2
|µ−ms,ms) = δjj� . (7.68)

The spinors fulfil

φ 1
2
φ
†
1
2

=

�
1

0

��
1 0

�
=

�
1 0

0 0

�
(7.69)

φ− 1
2
φ
†
− 1

2

=

�
0

1

��
0 1

�
=

�
0 0

0 1

�
(7.70)

and thus also �

ms=± 1
2

φmsφ
†
ms

= φ 1
2
φ
†
1
2

+ φ− 1
2
φ
†
− 1

2

= I2. (7.71)

Furthermore they fulfil the orthonormality relation

φ
†
ms

φm�
s
= δmsm

�
s
. (7.72)

From these relations also follows the orthonormality of the spin spherical harmonics:ˆ
dr̂χ†

Λ�(r̂)χΛ(r̂) = δΛΛ�

ˆ
dr̂χ†

Λ
�(r̂)χΛ(r̂) = δ

ΛΛ
� (7.73)

ˆ
dr̂χ†

Λ�(r̂)χΛ
(r̂) = δ

ΛΛ� .
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Table 7.1: An overview of the explicit expressions for the first ten spin spherical harmonics.

index l j µ κ χΛ(θ,φ )

1 0 1/2 -1/2 -1
�

0

Y0,0(r̂)

�
=

�
0�
1

4π

�

2 1/2 1/2 -1
�

Y0,0(r̂)
0

�
=

� �
1

4π

0

�

3 1 1/2 -1/2 1



 −

�
2

3
Y1,−1(r̂)�

1

3
Y1,0(r̂)



 =



 −

�
1

4π
sin(θ)e−iφ

�
1

4π
cos(θ)





4 1/2 1/2 1



 −

�
1

3
Y1,0(r̂)�

2

3
Y1,1(r̂)



 =



 −

�
1

4π
cos(θ)

−

�
1

4π
sin(θ)eiφ





5 3/2 -3/2 -2
�

0

Y1,−1(r̂)

�
=

�
0�

3

8π
sin(θ)e−iφ

�

6 3/2 -1/2 -2





�
1

3
Y1,−1(r̂)�
2

3
Y1,0(r̂)



 =





�
1

8π
sin(θ)e−iφ

�
1

2π
cos(θ)





7 3/2 1/2 -2





�
2

3
Y1,0(r̂)�

1

3
Y1,1(r̂)



 =





�
1

2π
cos(θ)

−

�
1

8π
sin(θ)eiφ





8 3/2 3/2 -2
�

Y1,1(r̂)
0

�
=

�
−

�
3

8π
sin(θ)eiφ

0

�

9 2 3/2 -3/2 2



 −

�
4

5
Y2,−2(r̂)�

1

5
Y2,−1(r̂)



 =



 −

�
3

8π
sin

2
(θ)e−2iφ

�
3

8π
sin(θ) cos(θ)e−iφ





10 3/2 -1/2 2



 −

�
3

5
Y2,−1(r̂)�

2

5
Y2,0(r̂)



 =



 −

�
9

8π
sin(θ) cos(θ)e−iφ

�
1

8π

�
3 cos

2
(θ)− 1

�





...
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Table 7.2: Allowed sets of quantum numbers in the different basis sets. Note that one state

in the (κ, µ)-basis has no direct relation to a state in the (l,ml,ms)-basis, but is given by

a linear combination of these states. However, the number of states up to a certain cuto ff

value lcut is the same in both representations. Also the maximal index (2, 8, 18, 32, 50, 72,

...) corresponding to the cutoff-value lcut and given by 2 · (lcut + 1)
2
, does not change.

(a) Different quantum states
|l,ml, s,ms� in the (l,ml,ms)-
basis.

index l ml ms

1 0 0 -1/2
2 +1/2
3 1 -1 -1/2
4 +1/2
5 0 -1/2
6 +1/2
7 1 -1/2
8 +1/2
9 2 -2 -1/2
10 +1/2
11 -1 -1/2
12 +1/2
13 0 -1/2
14 +1/2
15 1 -1/2
16 +1/2
17 2 -1/2
18 +1/2
19 3 -3 -1/2
20 +1/2
21 -2 -1/2
22 +1/2
23 -1 -1/2
24 +1/2
25 0 -1/2
26 +1/2
27 1 -1/2
28 +1/2
29 2 -1/2
30 +1/2
31 3 -1/2
32 +1/2

(b) Different quantum states |j, l, s, µ� in the (κ, µ)-basis.
The left and right part of this table are equivalent, that
means it is equivalent to use κ and µ or to use l, j and
µ.

index l j µ κ µ orbital
1 0 1/2 -1/2 -1 -1/2 s1/2

2 1/2 1/2 -1 1/2
3 1 1/2 -1/2 1 -1/2 p1/2

4 1/2 1/2 1 1/2
5 3/2 -3/2 -2 -3/2 p3/2

6 3/2 -1/2 -2 -1/2
7 3/2 1/2 -2 1/2
8 3/2 3/2 -2 3/2
9 2 3/2 -3/2 2 -3/2 d3/2

10 3/2 -1/2 2 -1/2
11 3/2 1/2 2 1/2
12 3/2 3/2 2 3/2
13 5/2 -5/2 -3 -5/2 d5/2

14 5/2 -3/2 -3 -3/2
15 5/2 -1/2 -3 -1/2
16 5/2 1/2 -3 1/2
17 5/2 3/2 -3 3/2
18 5/2 5/2 -3 5/2
19 3 5/2 -5/2 3 -5/2 f5/2

20 5/2 -3/2 3 -3/2
21 5/2 -1/2 3 -1/2
22 5/2 1/2 3 1/2
23 5/2 3/2 3 3/2
24 5/2 5/2 3 5/2
25 7/2 -7/2 -4 -7/2 f7/2

26 7/2 -5/2 -4 -5/2
27 7/2 -3/2 -4 -3/2
28 7/2 -1/2 -4 -1/2
29 7/2 1/2 -4 1/2
30 7/2 3/2 -4 3/2
31 7/2 5/2 -4 5/2
32 7/2 7/2 -4 7/2
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Another issue of importance is to transform between spin spherical harmonics ex-
pansions and spherical harmonics expansions. This can be done using the following
formula:

I2

�

m

Yl,m(r̂)Y ∗
l,m

(r̂�) =
�

j,µ

χΛ(r̂)χ†
Λ
(r̂�). (7.74)

To verify its correctness start off the right hand side and insert the definition (7.60):
�

j,µ

χΛ(r̂)χ
†
Λ(r̂

�
) =

�

j,µ

�

ms,m�
s

C(l, j,
1

2
|µ−ms,ms)C

∗
(l, j,

1

2
|µ−m

�
s,m

�
s)

·Yl,µ−ms(r̂)Y
∗
l,µ−m�

s
(r̂

�
)φmsφ

†
m�

s

=

�

µ

�

ms,m�
s




�

j

C(l, j,
1

2
|µ−ms,ms)C

∗
(l, j,

1

2
|µ−m

�
s,m

�
s)





·

�
Yl,µ−ms(r̂)Y

∗
l,µ−m�

s
(r̂

�
)φmsφ

†
m�

s

�

eq. (7.67)
=

�

µ

�

ms,m�
s

δmsm�
s
δµµ�

�
Yl,µ−ms(r̂)Y

∗
l,µ−m�

s
(r̂

�
)φmsφ

†
m�

s

�

eq. (7.55)
=

�

ml

�

ms=± 1
2

Yl,ml(r̂)Y
∗
l,ml

(r̂
�
)φmsφ

†
ms

eq. (7.71),m=ml
= I2

�

m

Yl,m(r̂)Y
∗
l,m(r̂

�
).



8 The Free Dirac Particle

A relativistic electron in free space is described by the potential-free Dirac
equation. The solution of this equation is given by Dirac plane waves. After
separating the radial and angular parts, one obtains spin spherical harmonics
(discussed in the previous chapter) as the angular parts. To obtain the radial
parts, the Bessel differential equation is solved, yielding Bessel, Hankel and
Neumann functions.

8.1 Solution of the Free Dirac Equation: Dirac Plane Waves

In analogy to plane waves as the solution of the Schrödinger equation, one can
calculate the solution of the Dirac Hamiltonian without a potential

Ĥ0 = cαp̂ + βmc
2
. (8.1)

The solutions of the time dependent Dirac equation (6.1) are assumed to be of the
form

Ψ(r, t) =
�

χ

ϕ

�
ei(kr−W

� t)
= ψ(r)e−

i
�Wt (8.2)

where ψ(r) is the solution of the stationary equation, given by

ψ(r) =
�

χ

ϕ

�
eikr

= Ueikr
. (8.3)

Here χ and ϕ a two-spinors that are called the large and small component of the
double-spinor U .

Before moving on, first note that

p̂eikr
= �keikr (8.4)

as it can easily be verified by applying the operator p̂ on the exponential function.

Inserting the form assumed for the solution ψ into the stationary Dirac equation (6.5)
and using the relation above yields the equation

c�
�

0 σ
σ 0

��
χ

ϕ

�
keikr

+mc
2

�
I2 0

0 −I2

��
χ

ϕ

�
eikr

= W

�
χ

ϕ

�
eikr (8.5)

which can be rewritten into a system of two equations:
�
W −mc

2
�
χ− c�σkϕ = 0 (8.6)

�
W +mc

2
�
ϕ− c�σkχ = 0. (8.7)
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For non-trivial solutions of this equation system its coefficient matrix must have a
vanishing determinant:

�
W −mc

2
� �

W +mc
2
�
− c

2�2 (σk) (σk) = 0. (8.8)

From the property (7.20) of Pauli matrices and commuting operators one can conclude

(σk) (σk) = k
2
, (8.9)

which, inserted into (8.8), yields

W
2

= c
2�2k2 +m

2
c
4
. (8.10)

Furthermore, from (8.7) follows the relationship

ϕ =
c�σk

W +mc2
χ (8.11)

between the large and the small component.

The basis vectors χ can be any two linearly independent vectors. Commonly, they are
chosen as the eigenvectors of σz, which correspond to the states “spin up” (ms = +1/2)
and “spin down” (ms = −1/2):

φ 1
2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (8.12)

ms determines the z-component of the spin angular momentum s and is given by

ms = ±s (8.13)

where s = 1/2.

Using these results, the double-spinor U can be written as

U = Ums =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
, (8.14)

where the normalisation constant is determined by the condition U
2
ms

= 1, using
equations (8.9) and (8.10). Thus we can write:

The stationary right-hand side solutions of the free particle Dirac equation are:

ψkms(r) =
�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (8.15)

where
W

2
= c

2�2k2 +m
2
c
4 (8.16)

and
φ 1

2
=

�
1

0

�
, φ− 1

2
=

�
0

1

�
. (8.17)
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These solutions, as already mentioned above, are called the right-hand side solutions
of the Dirac equation. They are two-spinor column vectors, i.e. of dimension 4× 1,
and solve the equation �

Ĥ
0
−W

�
ψkms(r) = 0. (8.18)

One can, however, also consider an equation of the form

ψkms
(r)

�
Ĥ

0
−W

�
= 0, (8.19)

where ψkms
is a row vector, i.e. it has dimension 1× 4 , and the operator Ĥ

0 acts to
the left. The solution of this equation is called the left-hand side solution.

8.2 Solution of the Free Dirac Equation for Separated Radial and
Angular Parts

The previous section showed how to express the solution of the free Dirac equation in
a basis set of Dirac plane waves. This section, in contrast, uses the representation eq.
(7.36) of the Dirac equation to derive the solutions in a different basis set according
to the eigenvalues Λ = (κ, µ) of the spin-orbit operator and the angular momentum
operator.

Before actually starting, we consider how the different parts in equation (7.36) act on
the spin spherical harmonics χΛ. We already saw in section 7.5 how the spin-orbit
operator K̂ acts on them. However, we have not yet looked on how σr acts on them.
It is a few lines of calculus (cf. [49] p. 59) to show that

− σrK̂ = K̂σr. (8.20)

As K̂χΛ = �κχΛ after eq. (7.64), this implies

K̂ (−σrχΛ) = −�κ (−σrχΛ) . (8.21)

Thus −σrχΛ must be an eigenfunction of K̂. On the other hand we know that −�κ
is the eigenvalue corresponding to the eigenfunction χ

Λ
, where Λ = (−κ, µ):

K̂χ
Λ
= −�κχ

Λ
. (8.22)

Comparing the two equations it follows that:

− σrχΛ = χ
Λ

(8.23)
−σrχΛ

= χΛ. (8.24)

Now we come back to the original problem of solving the stationary Dirac equation
with the Hamiltonian given in eq. (7.36). The first step is to assume the solution is a
wave function of the following form:

ψ(r) = ψΛ(r) =
�

ψ
t
(r)χΛ(r̂)

iψ
b
(r)χ

Λ
(r̂)

�
. (8.25)
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Inserting this into the Dirac equation yields:

−icσr

�
� ∂

∂r
+ �1

r
+

K̂

r

��
iψ

b
(r)χ

Λ
(r̂)

ψ
t
(r)χΛ(r̂)

�
+mc

2

�
ψ
t
(r)χΛ(r̂)

−iψ
b
(r)χ

Λ
(r̂)

�

= W

�
ψ
t
(r)χΛ(r̂)

iψ
b
(r)χ

Λ
(r̂)

�
(8.26)

This can be regarded as a system of two equations. Using K̂χΛ = �κχΛ and
K̂χ

Λ
= −�κχ

Λ
, we obtain

cσr�
�

∂

∂r
+

1

r
−

κ

r

�
ψ
b
(r)χ

Λ
(r̂) +mc

2
ψ
t
(r)χΛ(r̂) = Wψ

t
(r)χΛ(r̂) (8.27)

−icσr�
�

∂

∂r
+

1

r
+

κ

r

�
ψ
t
(r)χΛ(r̂)− imc

2
ψ
b
(r)χ

Λ
(r̂) = iWψ

b
(r)χ

Λ
(r̂).

Applying equations (8.23) and (8.24) this is rewritten as

− c�
�

∂

∂r
+

1

r
−

κ

r

�
ψ
b
(r)χΛ(r̂) +mc

2
ψ
t
(r)χΛ(r̂) = Wψ

t
(r)χΛ(r̂) (8.28)

c�
�

∂

∂r
+

1

r
+

κ

r

�
ψ
t
(r)χ

Λ
(r̂)−mc

2
ψ
b
(r)χ

Λ
(r̂) = Wψ

b
(r)χ

Λ
(r̂),

which can be written in the form

c� ∂

∂r
ψ
b
(r) = −c�1− κ

r
ψ
b
(r)−

�
W −mc

2
�
ψ
t
(r) (8.29)

c� ∂

∂r
ψ
t
(r) = −c�1 + κ

r
ψ
t
(r) +

�
W +mc

2
�
ψ
b
(r).

At this point the choice of the form assumed for the solution in the beginning becomes
plausible: inserting the i in the second component eventually yields two real (i.e.
non-complex) equations.

The next step is to make the substitutions

u1(r) := rψ
t
(r), u2(r) := rψ

b
(r), (8.30)

yielding the equations

c� ∂

∂r

�
1

r
u2(r)

�
= −c�1− κ

r2
u2(r)−

�
W −mc

2
�

r
u1(r) (8.31)

c� ∂

∂r

�
1

r
u1(r)

�
= −c�1 + κ

r2
u1(r) +

�
W +mc

2
�

r
u2(r).

After multiplying both equations by r and computing the differentiations, the second
order differential terms cancel out, leaving the equations

∂

∂r
u2(r) =

κ

r
u2(r)−

1

c�
�
W −mc

2
�
u1(r) (8.32)

∂

∂r
u1(r) = −

κ

r
u1(r) +

1

c�
�
W +mc

2
�
u2(r).
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This system of two linear first order differential equations can be rewritten into one
second order equation. To do so, the second equation of (8.32) is rearranged:

u2(r) =
c�

W +mc2

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
. (8.33)

The obtained expression for u2 is then inserted into the first equation:

c�
W +mc2

∂

∂r

�
∂

∂r
u1(r) +

κ

r
u1(r)

�

=
c�

W +mc2

κ

r

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
−

W −mc
2

c� u1(r). (8.34)

After computing the differentiation, this equation can be simplified to

∂
2

∂r2
u1(r)−

κ+ κ
2

r2
u1(r) +

W
2 −m

2
c
4

c2�2 u1(r) = 0. (8.35)

Inserting the relation (8.10) and multiplying the whole equation by r
2 it can be

rewritten as
r
2 ∂

2

∂r2
u1(r) +

�
(kr)

2
− κ (κ+ 1)

�
u1(r) = 0. (8.36)

Resubstituting u1 = rψ
t and u2 = rψ

b yields

r
2 ∂

2

∂r2
rψ

t
(r) +

�
(kr)

2
− κ (κ+ 1)

�
rψ

t
(r) = 0 (8.37)

⇐⇒ r
2 ∂

2

∂r2
ψ
t
(r) + 2r

∂

∂r
ψ
t
(r) +

�
(kr)

2
− κ (κ+ 1)

�
ψ
t
(r) = 0, (8.38)

where r �= 0 is required to divide the equation by r.

Equation (8.38) is known as the Bessel differential equation, cf. the digression on
page 30. Its solutions are given by jl(kr) and nl(kr) and all linear combinations of
these two functions. Here jl denote spherical Bessel functions and nl are spherical
Neumann functions. The latter can be defined using spherical Hankel functions hl

and the relation hl = jl + inl, cf. the digression on page 29. The spherical Bessel
functions jl(kr) are regular, i.e. jl(kr) → 0 as r → 0, whereas nl(kr) are irregular,
i.e. they diverge. Consequently, they are called the regular and irregular solution
respectively.

After the solution for ψ
t is known, the second component ψ

b can be calculated by
using equation (8.33):

u2(r) =
c�

W +mc2

�
∂

∂r
u1(r) +

κ

r
u1(r)

�
(8.39)

⇐⇒ rψ
b
(r) =

c�
W +mc2

�
∂

∂r
+

κ

r

�
rψ

t
(r) (8.40)

⇐⇒ ψ
b
(r) =

c�
W +mc2

1

r

�
∂

∂r
+

κ

r

�
rwl(kr). (8.41)
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Here wl = jl for the regular solution or wl = nl for the irregular solution. In both
cases, and also for wl = hl, the differentiation can be expressed by a recursion relation:

d

dr
wl(kr) = kwl−1(kr)−

l + 1

r
wl(kr) (8.42)

=
l

r
wl(kr)− kwl+1(kr) (8.43)

Using equations (7.58) and (7.62), it follows that

l =

�
l − 1 if κ > 0

l + 1 if κ < 0.
(8.44)

Now, in the case κ > 0 it is convenient to work with eq. (8.42). Using eq. (7.58) it
follows that l = κ, and the recursion can be written as

d

dr
wl(kr) = kw

l
(kr)−

κ+ 1

r
wl(kr). (8.45)

On the other hand, in the case κ < 0 it is convenient to work with eq. (8.43) and
from (7.58) it follows that l = −κ− 1. Hence, this recursion can be written as

d

dr
wl(kr) = −

κ+ 1

r
wl(kr)− kw

l
(kr). (8.46)

Comparing that to the first case κ > 0, one notes that the two cases only differ by a
sign. Therefore, an expression valid for both cases is

d

dr
wl(kr) = sign(κ)kw

l
(kr)−

κ+ 1

r
wl(kr). (8.47)

This recursion relation is now inserted into eq. (8.41):

ψ
b
(r) =

c�
W +mc2

1

r

�
∂

∂r
+

κ

r

�
rwl(kr)

=
c�

W +mc2

�
κ+ 1

r
wl(kr) +

∂

∂r
wl(kr)

�

=
c�

W +mc2

�
κ+ 1

r
wl(kr) + sign(κ)kw

l
(kr)−

κ+ 1

r
wl(kr)

�

=
c�

W +mc2
k sign(κ)w

l
(kr) (8.48)

Replacing wl by jl and nl respectively yields the final result for the regular and
irregular right-hand side solution of the free particle Dirac equation in angular
momentum basis:

ψ
reg
Λ

(r) : = JΛ(r) :=

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(8.49)

ψ
irr
Λ (r) : = NΛ(r) :=

�
nl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

n
l
(kr)χ

Λ
(r̂)

�
. (8.50)
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Now we also wish to calculate the left-hand side solution. This is a simple task.
Instead of the form of the solution in eq. (8.25) we start from

ψΛ(r) =
�

ψ
t
(r)χ

†
Λ
(r̂) −iψ

b
(r)χ

†
Λ
(r̂)

�
. (8.51)

Performing the same steps as in the previous case eventually results in the equation
system (8.28). Hence

ψ
t
(r) = ψ

t
(r), ψ

b
(r) = ψ

b
(r) (8.52)

and therefore the result is:

ψ
reg
Λ (r) := JΛ(r) :=

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(8.53)

ψ
irr
Λ (r) := NΛ(r) :=

�
nl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

n
l
(kr)χ

†
Λ
(r̂)

�
. (8.54)

As the Hankel functions hl are a linear combination of Bessel and Neumann functions,
it is also possible to use a basis of Bessel and Hankel functions instead22:

An alternative basis for the left-hand side solution of the free particle Dirac equation
in an angular momentum basis is given by

JΛ(r) :=

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(8.55)

HΛ(r) :=

�
hl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

Λ
(r̂)

�
. (8.56)

JΛ(r) :=

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(8.57)

HΛ(r) :=

�
hl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

†
Λ
(r̂)

�
. (8.58)

This representation is the one that will be used from now on.

8.3 Angular Momentum Expansion of a Dirac Plane Wave

The Dirac plane waves from section 8.1 can be expanded in an angular momentum
representation using the results from section 8.2. This is useful in order to express
them in terms of spin spherical harmonics χΛ, which are eigenfunctions of the spin-
orbit operator, rather than in terms of spinors φms . Once the results for the Dirac
plane waves have been obtained, these results can further be used to derive an angular
momentum expansion of the free particle Green function.

22This is a convention in the Jülich KKR group, the representation with Neumann functions,
however, can equally well be used.
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We start with the expression for the plane wave, eq. (8.15):

ψkms(r) =
�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr

. (8.59)

The strategy is to write the term φmseikr as

φmseikr
=

�

Λ

aΛjl(kr)χΛ(r̂) (8.60)

and determine the coefficients aΛ fulfilling this relation. To do so, the equation is
multiplied by χ

†
Λ

and then we integrate over r̂:
ˆ

dr̂χ†
Λ
(r̂)φmseikr

=

�

Λ�

�ˆ
dr̂χ†

Λ
(r̂)χΛ�(r̂)

�
aΛ�jl�(kr). (8.61)

Using the orthonormality of the spin spherical harmonics, eq. (7.73), the term in
square brackets simplifies to δΛΛ� , thus yielding the expression

ˆ
dr̂χ†

Λ
(r̂)φmseikr

= aΛjl(kr). (8.62)

Using the definition of the spin spherical harmonics eq. (7.60), χ†
Λ

can be rewritten
as

χ
†
Λ
(r̂) =

�

ms=±1/2

C(l, j,
1

2
|µ−ms,ms)Y

∗
l,µ−ms

(r̂)φ†
ms

. (8.63)

Inserting this into eq. (8.62) gives

aΛjl(kr) =

�

m�
s=±1/2

C(l, j,
1

2
|µ−m

�
s,m

�
s)

ˆ
dr̂Y ∗

l,µ−m�
s
(r̂)eikr

φ
†
m�

s
φms� �� �

δm�
sms

= C(l, j,
1

2
|µ−ms,ms)

ˆ
dr̂Y ∗

l,µ−ms
(r̂)eikr

, (8.64)

where in the second step the orthonormality of the spinors φms has been used.

For the term eikr we already know an expansion from eq. (4.16):

e
ikr

= 4π

�

L

i
l
Y

∗
L (k̂)YL(r̂)jl(kr). (8.65)

Inserting this into eq. (8.64) yields

aΛjl(kr) = 4π

�

l�,m�

i
l
�
jl�(kr)C(l, j,

1

2
|µ−ms,ms)Y

∗
l�,m�(k̂)

ˆ
dr̂Y ∗

l,µ−ms
(r̂)Yl�,m�(r̂)

� �� �
δl�,lδm�,µ−ms

= 4πi
l
jl(kr)C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂) (8.66)
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Hence
aΛ = 4πi

l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂). (8.67)

This can be inserted into eq. (8.60), yielding

φmseikr
=

�

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)jl(kr)χΛ(r̂). (8.68)

So far we found an expansion for the first component of the Dirac plane wave. The next
step is to find an expansion for the second component, i.e. for the term (σk)φmseikr.
Since φms is a constant two-component vector, it is a simple consequence of eq. (8.4)
that

� (σk)φmseikr
= (σp̂)φmseikr

. (8.69)

Using eq. (7.34) we can write it as

(σp̂)φmseikr
= −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
φmseikr

. (8.70)

In order to obtain an expansion like eq. (8.68), the question is how the σp̂ operator
acts on jl(kr)χΛ(r̂). We know

σp̂jl(kr)χΛ(r̂) = −iσr

�
� ∂

∂r
+

�
r
+

K̂

r

�
jl(kr)χΛ(r̂) (8.71)

and want to find the eigenvalues of this operator. Thus, let us look at the different
parts of this expression:

• By using eq. (8.47) we know that

� ∂

∂r
jl(kr)χΛ(r̂) = �

�
sign(κ)kj

l
(kr)−

κ+ 1

r
jl(kr)

�
χΛ(r̂). (8.72)

• K̂ acts only on the spherical part of a function, as it can be expressed in terms
of the angular momentum operator L̂, which only contains angular derivatives
in spherical coordinates. Hence we get

K̂

r
jl(kr)χΛ(r̂) =

1

r
jl(kr)K̂χΛ(r̂)

=
�κ
r
jl(kr)χΛ(r̂). (8.73)

Inserting these two results yields

σp̂jl(kr)χΛ(r̂) = −iσr�
�
sign(κ)kj

l
(kr)−

κ+ 1

r
jl(kr) +

1

r
jl(kr) +

κ

r
jl(kr)

�
χΛ(r̂)

= −iσr�
�
sign(κ)kj

l
(kr)

�
χΛ(r̂). (8.74)
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Applying eq. (8.23) this becomes

σp̂jl(kr)χΛ(r̂) = i�ksign(κ) · j
l
(kr)χ

Λ
(r̂). (8.75)

Now we can rewrite the expression for the plane wave:

ψkms(r) =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (8.76)

Gl. (8.68)
=

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)

·

�
jl(kr)χΛ(r̂)

c�σk
W+mc2

φmsjl(kr)χΛ(r̂)

�

Gl. (8.75)
=

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)

·

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
.

By using the definition eq. (8.55) of the functions JΛ, this simplifies to the final
result:

Angular momentum expansion of a Dirac plane wave:

ψkms(r) =
�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)JΛ(r). (8.77)
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The Green function of the free particle is vital for setting up Lippmann-
Schwinger equations. It is a 4× 4 matrix that can be expressed in terms of
the solutions of the free Dirac equation, namely spinors containing Bessel
and Hankel functions (the radial part) multiplied by spin spherical harmonics
(the angular part).

9.1 Derivation

We have seen in chapter 4 how the Green function of the potential free Schrödinger
equation is derived. This expression will be useful when deriving the Green function
of the Dirac equation, which will be derived now.

Starting point, of course, is the free particle Dirac Hamiltonian Ĥ0 as defined in eq.
(8.1). For the stationary Dirac equation of the free electron

Ĥ0ψ(r) = W I4ψ(r) (9.1)

the corresponding Green function is defined by
�
Ĥ0 −W I4

�
G

0
(r, r�;W ) = −δ(r − r�)I4. (9.2)

What will be shown in this section is the following proposition:

Once the non-relativistic free particle Green function G
0
nr is known, the relativistic

one can be constructed from it by

G
0
(r, r�,W ) =

1

2mc2

�
Ĥ0 +W I4

�
G

0
nr(r, r

�
;E) (9.3)

eq. (4.15) and (8.1)
= −

1

c2�2
�
cαp̂ + βmc

2
+W I4

� e
ik|r−r�|

4π|r − r�|
. (9.4)

Proof: To verify the statement let us first look at the following identity:
�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
= Ĥ

2
0 −W

2
I4 (9.5)

= c
2
(αp̂)2 +mc

3
(αp̂β + βαp̂) +m

2
c
4
β
2
−W

2
I4.

We will simplify this term by term:

• Eq. (8.9), together with eq. (8.4), yields:

c
2
(αp̂)2 = c

2p̂2
= c

2
(−i�∇)

2
= −c

2�2∆. (9.6)
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• It is easy to verify that for any 4× 4 matrix

M =

�
m11 m12

m21 m22

�
, (9.7)

where the matrix elements mij themselves are 2 × 2 matrices, the following
identity holds:

βM +Mβ = 2

�
m11 0

0 −m22

�
. (9.8)

Thus, using expression (7.35) and putting M = αp̂ it follows

αp̂β + βαp̂ = 0. (9.9)

• The β matrix fulfils β
2
= I4.

Using these three identities we conclude
�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
= − c

2�2∆I4 +
�
m

2
c
4
−W

�
I4

= − c
2�2

�
∆+ k

2
�
I4 (9.10)

where in the second step eq. (8.10) has been inserted. Now we use the definition of
the non-relativistic Green function in eq. (4.4) and insert an identity matrix I4 on
both sides of the equation:

�2
2m

�
∆+ k

2
�
I4G

0
nr(r, r

�
;E) = I4δ(r − r�). (9.11)

Replacing the term ∆+ k
2 in this equation with the result from eq. (9.10) yields

1

2mc2

�
Ĥ0 −W I4

��
Ĥ0 +W I4

�
G

0
nr(r, r

�
;E) = −I4δ(r − r�). (9.12)

Comparing that with the definition of the relativistic Green function G
0 in eq. (9.2)

we obtain the result

G
0
(r, r�;W ) =

1

2mc2

�
Ĥ0 +W I4

�
G

0
nr(r, r

�
;E). (9.13)

This completes the proof and forms an efficient way of calculating G
0. Note that G

0

no longer is a scalar as in the non-relativistic case, but it is now a 4× 4 matrix.

9.2 Angular Momentum Expansion

The step is to find an angular momentum expansion of the free electron Green function.
We recall the corresponding expansion in the non-relativistic case, eq. (4.28):

G
0
nr(r, r

�
;E) = −ik

2m

�2
�

L

YL(r̂)Y ∗
L (r̂

�
)jl(kr<)hl(kr>). (9.14)
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First let us consider the case r > r
�, meaning that this equation reads as

G
0
nr(r, r

�
;E) = −ik

2m

�2
�

L

YL(r̂)Y ∗
L (r̂

�
)jl(kr

�
)hl(kr). (9.15)

In the previous section we derived a way to express the relativistic free particle Green
function in terms of the non-relativistic one, eq. (9.3). Inserting the expression above
into this equation we get

G
0
(r, r�;W ) = −

ik

c2�2
�
Ĥ0 +W I4

��

L

YL(r̂)Y ∗
L (r̂

�
)jl(kr

�
)hl(kr). (9.16)

Now we rewrite the term Ĥ0 +W I4 into a matrix form:

Ĥ0 +W I4 = cαp̂ + βmc
2
+W I4

=

�
0 cσp̂

cσp̂ 0

�
+

�
mc

2
I2 0

0 −mc
2
I2

�
+

�
W I2 0

0 W I2

�

=

� �
W +mc

2
�
I2 cσp̂

cσp̂
�
W −mc

2
�
I2

�
. (9.17)

Inserting this into the equation above we find a convenient form of the Green function
G

0 (which is a 4× 4 matrix) as a 2× 2 matrix where its four entries G
0
ij

itself are
2× 2 matrices, too:

G
0
(r, r

�
;W ) = −

ik

c2�2

� �
W +mc

2
�
I2 cσp̂

cσp̂
�
W −mc

2
�
I2

��

L

YL(r̂)Y
∗
L (r̂

�
)jl(kr

�
)hl(kr)

=:

�
G

0
11(r, r

�
;W ) G

0
12(r, r

�
;W )

G
0
21(r, r

�
;W ) G

0
22(r, r

�
;W )

�
(9.18)

Now let us calculate the matrix elements one by one.

1. G
0
11

: As defined above, it is

G
0
11(r, r

�
;W ) = −

ik

c2�2
�
W +mc

2
�
I2

�

L

YL(r̂)Y ∗
L (r̂

�
)jl(kr

�
)hl(kr). (9.19)

Using eq. (7.74) we can replace the spherical harmonics by spin spherical
harmonics:

G
0
11(r, r

�
;W ) = −

ik

c2�2
�
W +mc

2
��

l

�
I2

�

m

Yl,m(r̂)Y ∗
l,m

(r̂�)

�
jl(kr

�
)hl(kr)

= −
ik

c2�2
�
W +mc

2
��

l




�

j,µ

χΛ(r̂)χ†
Λ
(r̂�)



 jl(kr
�
)hl(kr)

= −
ik

c2�2
�
W +mc

2
��

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�) (9.20)
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2. G
0
12

: Completely analogously to the first case, we can directly write

G
0
12(r, r

�
;W ) = −

ik

c2�2 cσp̂
�

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.21)

Now, using eq. (8.75) but replacing jl by hl (which is legitimate, because the
equation is valid for wl = jl, hl, nl as it can be seen from its derivation) we have

σp̂hl(kr)χΛ(r̂) = i�ksign(κ) · h
l
(kr)χ

Λ
(r̂). (9.22)

Inserting this yields for the Green function:

G
0
12(r, r

�
;W ) =

k
2

c�
�

sign(κ)Λjl(kr
�
)h

l
(kr)χ

Λ
(r̂)χ†

Λ
(r̂�). (9.23)

For the sake of a simpler notation later on, it is convenient to perform the
following renaming:

κ → −κ.

As the sum includes all values of κ, this does not change anything. Consequences
of this renaming are:

Λ → Λ, Λ → Λ

l → l, l → l

sign(κ) → −sign(κ).

Applying this to eq. (9.23) yields

G
0
12(r, r

�
;W ) = −

k
2

c�
�

Λ

sign(κ)j
l
(kr

�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.24)

3. G
0
21

: This element is identical to G
0
12

, thus we copy the result from eq. (9.23):

G
0
21(r, r

�
;W ) =

k
2

c�
�

Λ

sign(κ)jl(kr
�
)h

l
(kr)χ

Λ
(r̂)χ†

Λ
(r̂�) (9.25)

4. G
0
22

: This can be adopted from the first case without any changes, except for
one minus sign instead of a plus:

G
0
22(r, r

�
;W ) = −

ik

c2�2
�
W −mc

2
��

Λ

jl(kr
�
)hl(kr)χΛ(r̂)χ†

Λ
(r̂�). (9.26)

Again, for the sake of a simpler notation later on, we rename as in point 2,
yielding:

G
0
22(r, r

�
;W ) = −

ik

c2�2
�
W −mc

2
��

Λ

j
l
(kr

�
)h

l
(kr)χ

Λ
(r̂)χ†

Λ
(r̂�). (9.27)
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Combining the results from points 1 to 4 yields: G
0
(r, r�;W ) =

−
ik

c2�2
�

Λ





�
W + mc2

�
hl(kr)χΛ(r̂)jl(kr�)χ

†
Λ(r̂�) −ic�ksign(κ)hl(kr)χΛ(r̂)jl(kr

�)χ†
Λ
(r̂�)

ic�ksign(κ)hl(kr)χΛ(r̂)jl(kr�)χ
†
Λ(r̂�)

�
W − mc2

�
hl(kr)χΛ(r̂)jl(kr

�)χ†
Λ
(r̂�)



 (9.28)

= −
ik

�
W + mc2

�

c2�2
�

Λ





hl(kr)χΛ(r̂)jl(kr�)χ
†
Λ(r̂�) −ic�ksign(κ)�

W+mc2
� hl(kr)χΛ(r̂)jl(kr

�)χ†
Λ
(r̂�)

ic�ksign(κ)�
W+mc2

� hl(kr)χΛ(r̂)jl(kr�)χ
†
Λ(r̂�) c2�2k2

�
W+mc2

�2 hl(kr)χΛ(r̂)jl(kr
�)χ†

Λ
(r̂�)



 .

In the second step the component G
0
22

was rewritten using eq. (8.10):
�
W +mc

2
� �

W −mc
2
�
= W

2
−m

2
c
4
= c

2�2k2. (9.29)

The matrix can be rewritten into a product of two vectors: G
0
(r, r�;W ) =

−

�
W +mc

2
�

c2�2 ik

�

Λ

�
hl(kr)χΛ(r̂)

ic�ksign(κ)
W+mc2 hl(kr)χΛ(r̂)

��
jl(kr

�
)χ

†
Λ(r̂

�
) −

ic�ksign(κ)
W+mc2 jl(kr

�
)χ

†
Λ
(r̂

�
)

�
.

(9.30)

Now recall the definitions in eqs. (8.55) to (8.58):

JΛ(r) : =

�
jl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

Λ
(r̂)

�
(9.31)

HΛ(r) : =

�
hl(kr)χΛ(r̂)

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

Λ
(r̂)

�
(9.32)

JΛ(r) : =

�
jl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

j
l
(kr)χ

†
Λ
(r̂)

�
(9.33)

HΛ(r) : =

�
hl(kr)χ

†
Λ
(r̂) −

ikc�·sign(κ)
W+mc2

h
l
(kr)χ

†
Λ
(r̂)

�
. (9.34)

Using these functions, the Green function can be written as

G
0
(r, r�;W ) = −

�
W +mc

2
�

c2�2 ik

�

Λ

HΛ(r)JΛ(r�) for r > r
�
. (9.35)

For the case r
�
> r analogous calculations yield

G
0
(r, r�;W ) = −

�
W +mc

2
�

c2�2 ik

�

Λ

JΛ(r)HΛ(r�) for r > r
�
. (9.36)

So the final result is:

Expansion of the Green function for a free Dirac particle:

G
0
(r, r�;W ) = −ik

�
W +mc

2
�

c2�2
�

Λ

�
Θ(r − r

�
)HΛ(r)JΛ(r�) + Θ (r

�
− r)JΛ(r)HΛ(r�)

�

(9.37)



10 Relativistic Lippmann-Schwinger Equations

This chapter contains the most important analytical work of this thesis:
the derivation of an expansion of the potential matrix into a radial and an
angular part and, thereafter, such a separation for the relativistic Lippmann-
Schwinger equations including a full potential. Within the derivation I
introduce what I call D coefficients. They form the relativistic analogue
to the Gaunt coefficients in the non-relativistic case. The analytical results
found form the basis of the Dirac single-site solver that I implemented.

10.1 Derivation

The derivation of the relativistic version of the Lippmann-Schwinger equation is for
the most part analogous to the non-relativistic case. The only noteworthy difference
is that there are now two equations instead of one – one for the right-hand side
solution and another one for the left-hand side solution.

The analogues of eq. (5.1) are the two equations for the particular solutions:

ψ
partc

(r) = L
−1

V (r)ψ(r) =
ˆ

dr�G0
(r, r�;W )V (r�)ψ(r�) (10.1)

ψ
partc

(r) = ψ(r)
�
L
−1

V (r)
�t

=

ˆ
dr�ψ(r�)V (r�)G0

(r�, r;W ) (10.2)

where ψ and ψ
partc are 4 × 1 column vectors whereas ψ and ψ

partc are 1 × 4 row
vectors. Note that the differential operator L as well as the potential V are 4 × 4

matrices. t denotes the transpose.

The general solutions ψ, ψ of the inhomogeneous equation system are given by the sum
of one particular solutions ψ

partc, ψpartc plus the set of solutions of the homogeneous
system,

�
ψ
0

kms

�
and

�
ψ
0

kms

�
:

ψkms = ψ
partc

+ ψ
0

kms
(10.3)

ψkms
= ψ

partc
+ ψ

0

kms
. (10.4)

The latter are Dirac plane waves, as defined in equations (8.15) and (8.19). We note
this result:



10.2 Angular Momentum Expansion of the Lippmann-Schwinger Equations 85

The relativistic Lippmann-Schwinger equations for the right-hand side and left-hand
side solutions are

ψkms(r) = ψ
0

kms
(r) +

ˆ
dr�G0

(r, r�;W )V (r�)ψkms(r
�
) (10.5)

ψkms
(r) = ψ

0

kms
(r) +

ˆ
dr�ψkms

(r�)V (r�)G0
(r�, r;W ), (10.6)

where ψ
0

kms
and ψ

0

kms
are Dirac plane waves, given by equations (8.15) and (8.19).

10.2 Angular Momentum Expansion of the Lippmann-Schwinger
Equations

The starting point for deriving the angular momentum expansion of the relativistic
Lippmann-Schwinger equation is the expansion of Dirac plane, see eq. (8.15)

ψ
0

kms
(r) =

�
W +mc

2

2W

� 1
2
�

φms
c�σk

W+mc2
φms

�
eikr (10.7)

in an a spin angular momentum basis, as shown in eq. (8.77):

ψ
0

kms
(r) =

�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)JΛ(r). (10.8)

The solution of the Lippmann-Schwinger equation (10.5) can be expanded in an
analogue manner

ψkms(r) =
�
W +mc

2

2W

� 1
2 �

Λ

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)RΛ(r) (10.9)

with an unknown function ψΛ. Inserting this expansion together with the expansion
for the Dirac plane wave, eq. (10.8), into the Lippmann-Schwinger equation (10.5)
yields

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)RΛ(r) (10.10)

=

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂)
�
JΛ(r) +

ˆ
drG0

(r, r�;W )V (r�)RΛ(r�)
�
.
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The whole equation is multiplied by YΛ�(k̂) = Yl�,µ�−m�
s
(k̂). Integrating over k̂ and

using the orthonormality of the spherical harmonics then results in
�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)RΛ(r)δΛΛ� (10.11)

=

�

Λ

i
l
C(l, j,

1

2
|µ−ms,ms)

�
JΛ(r) +

ˆ
drG0

(r, r�;W )V (r�)RΛ(r�)
�
δΛΛ� .

Simplifying the equation gives

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r). (10.12)

For the left hand side solution RΛ the derivation is similar. The following box
summarises the four Lippmann-Schwinger equations:

Angular momentum Lippmann-Schwinger equations for the regular solutions:

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�) (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�RΛ(r�)V (r�)G0
(r�, r;W ) (10.14)

Angular momentum Lippmann-Schwinger equations for the irregular solutions:

SΛ(r) =

�

Λ�

βΛ�ΛHΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)SΛ(r�) (10.15)

SΛ(r) =

�

Λ�

βΛ�ΛHΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)G0
(r�, r;W ). (10.16)

Here the β and β matrices are defined by:

βΛ�Λ := δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)UΛ�(r) (10.17)

= δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r)

βΛ�Λ := δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drUΛ�(r)V (r)HΛ(r) (10.18)

= δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drJΛ�(r)V (r)SΛ(r)

The reason for introducing the β matrix and for choosing exactly the source term
above for the irregular solution can not be understood yet. It is because with this
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source term the irregular solution is chosen correctly to yield an easy expression for
the Green function of a Dirac particle in a potential, as it will be shown in the next
section, where also the equation for UΛ will be given. The equivalence of the two
representations for the β matrices will be proven in the next section, too.

10.3 Angular Momentum Expansion of the Relativistic Green Func-
tion for a Particle in a Potential

The objective of this work is to calculate the Green function of the single-site problem.
Hence, this section shows how to calculate it from the wave functions of the single
site problem and how the corresponding formula can be derived. A mathematically
complete derivation for the non-relativistic case was given in [75]. The derivation
here is based on this paper, however, the wave functions in the relativistic case are
vectors with four entries instead of scalar wave functions, and the Green function
and integration kernel are 4× 4 matrices now. Hence, one has to pay attention to
the order in which those vectors and matrices are multiplied. Apart from that, the
derivation is analogous to the non-relativistic case.

The claim is that

the Green function for a Dirac particle in a potential is given by

G(r, r�;W ) = −ik

�
W +mc

2
�

c2�2
�

Λ

�
Θ(r − r

�
)RΛ(r)SΛ(r�) + Θ (r

�
− r)SΛ(r)RΛ(r�)

�

(10.19)
with the wave functions RΛ, RΛ, SΛ and SΛ given by eqs. (10.13) to (10.16).

Proof: The proof will be split into eight steps, out of which the first seven describe the
case r > r

�, i.e. the first summand in the Green function, and the last step describes
which changes are necessary in order to derive the second summand.

1. General technique of rewriting a Fredholm to a Volterra equation

Following a technique shown by Rall [76], a Fredholm integral equation can be
rewritten into a Volterra integral equation.

A Fredholm equation is of the form

y(r) = f(r) +
ˆ

dr�G0
(r, r�;W )V (r�)y(r�) (10.20)

with arbitrary f . It has, according to section 5.7, the solution

y(r) = f(r) +
ˆ

dr�G(r, r�;W )V (r�)f(r�). (10.21)
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To solve it, it can be useful to rewrite it into a Volterra equation

y(r) = f(r) +
�

cΛJΛ(r) +
ˆ

dr�K0
(r, r�;W )V (r�)y(r�) (10.22)

by defining

K
0
(r, r�;W ) := G

0
(r, r�;W ) + ik

�
W +mc

2
�

c2�2
�

Λ

JΛ(r)HΛ(r�) (10.23)

cΛ := −ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)y(r). (10.24)

2. Rewriting the Lippmann-Schwinger equation to a Volterra equation

The technique from the first point can be applied to the Lippmann-Schwinger equation.
Let us start with the regular right hand side solution, eq. (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�). (10.25)

From eq. (9.37) we know the expansion of the Green function for the free Dirac
particle, which in the case r > r

� is

G
0
(r, r�;W ) = −

�
W +mc

2
�

c2�2 ik

�

Λ

HΛ(r)JΛ(r�). (10.26)

Inserting this into the expression for K
0, eq. (10.23), yields the integration kernel for

the Lippmann-Schwinger equation in a Volterra form:

K
0
(r, r�;W ) := −ik

�
W +mc

2
�

c2�2 Θ(r − r
�
)

�
�

Λ

HΛ(r)JΛ(r�)−
�

Λ

JΛ(r)HΛ(r�)

�
.

(10.27)

The Lippmann-Schwinger equation itself is, rewritten into the Volterra representation,
of the form of eq. (10.22). Thus, according to section 5.7, it has the solution

y(r) = f(r) +
�

Λ

cΛJΛ(r) +
ˆ

dr�K(r, r�;W )V (r�)

�
f(r�) +

�

Λ

cΛJΛ(r�)

�
(10.28)

where K has to fulfil the relation

K(r, r�;W ) = K
0
(r, r�;W ) +

ˆ
dr��K0

(r, r��;W )V (r��)K(r��, r�;W ). (10.29)

By defining the two auxiliary functions

F (r) = f(r) +
ˆ

dr�K(r, r�;W )V (r�)f(r�) (10.30)
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UΛ(r) = JΛ(r) +
ˆ

dr�K(r, r�;W )V (r�)JΛ(r�) (10.31)

the solution of the Volterra equation can be written in the short form

y(r) = F (r) +
�

Λ

cΛUΛ(r). (10.32)

3. Rewriting the cΛ coefficients using the β matrix (r > r
�)

For the part that follows the cΛ coefficients have to be rewritten to a different form.
In order to do so, we insert eq. (10.32) into the definition of the cΛ coefficients, eq.
(10.24):

cΛ = −ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)

�
F (r) +

�

Λ

cΛUΛ(r)

�
(10.33)

= −ik

�
W +mc

2
�

c2�2

�ˆ
drHΛ(r)V (r)F (r) +

�

Λ

cΛ

ˆ
drHΛ(r)V (r)UΛ(r)

�
.

This equation is equivalent to

�

Λ�

cΛ�

�
δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drHΛ�(r)V (r)UΛ�(r)

�
(10.34)

= −ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)F (r).

Now the term in square brackets is defined as the β matrix:

βΛ�Λ = δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)UΛ�(r) (10.35)

so that eq. (10.34) is viewed as an inhomogeneous linear equation with unknown cΛ,
and thus the cΛ coefficients can be determined via matrix inversion

cΛ = −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

ˆ
drHΛ�(r)V (r)F (r). (10.36)

Here β
−1

Λ�Λ denote the entries of the inverted matrix β
−1 (and not the inverted entries

of β). Inserting the definition of the auxiliary function F , eq. (10.30), into this
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expression yields

cΛ = −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

ˆ
dr
�
HΛ�(r)V (r) (10.37)

·

�
f(r) +

ˆ
dr�K(r, r�;W )V (r�)f(r�)

��

= −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

�ˆ
drHΛ�(r)V (r)f(r)

+

ˆ
drHΛ�(r)V (r)

ˆ
dr�K(r, r�;W )V (r�)f(r�)

�

= −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

�ˆ
drHΛ�(r)V (r)f(r)

+

ˆ
dr�HΛ�(r�)V (r�)

ˆ
drK(r,� r;W )V (r)f(r)

�

= −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

ˆ
dr
�
HΛ�(r) +

+

ˆ
dr�HΛ�(r�)V (r�)K(r,� r;W )

�
V (r)f(r).

We now define the function SΛ as the term in square brackets:

SΛ(r) = HΛ(r) +
ˆ

dr�HΛ(r�)V (r�)K(r�, r;W ). (10.38)

It will be shown in the seventh step of this proof that this definition is actually
equivalent to the definition in eq. (10.16). Using this form for SΛ the expression for
the cΛ coefficients simplifies to

cΛ = −ik

�
W +mc

2
�

c2�2
�

Λ�

β
−1

Λ�Λ

ˆ
drSΛ�(r)V (r)f(r). (10.39)

4. Derivation of a preliminary expression for the Fredholm integration
kernel (r > r

�)

From eq. (10.39) we can insert the explicit expression for the cΛ coefficients into the
formal solution of a Volterra equation, eq. (10.32):

y(r) = F (r)− ik

�
W +mc

2
�

c2�2
�

Λ

�

Λ�

β
−1

Λ�Λ

ˆ
dr�SΛ�(r�)V (r�)f(r�)UΛ(r). (10.40)
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Inserting eq. (10.30) for the auxiliary function F yields

y(r) = f(r) +
ˆ

dr�
�
K(r, r�;W ) (10.41)

−ik

�
W +mc

2
�

c2�2
�

Λ

�

Λ�

β
−1

Λ�ΛSΛ�(r�)UΛ(r)V (r�)f(r�)
�
.

By comparing this equation to the formal solution of a Fredholm equation, given in
eq. (10.21), it follows that the Fredholm integration kernel G must be equal to the
term in square brackets:

G(r, r�;W ) = K(r, r�;W )− ik

�
W +mc

2
�

c2�2
�

Λ

�

Λ�

β
−1

Λ�ΛSΛ�(r�)UΛ(r). (10.42)

5. Rewriting the equation for UΛ (r > r
�)

The defining equation for UΛ, eq. (10.31), is such that UΛ is the solution of the
Volterra equation

UΛ(r) = JΛ(r) +
ˆ

dr�K0
(r, r�;W )V (r�)UΛ(r�) (10.43)

with integration Kernel K. Inserting the expression for K
0 from eq. (10.27) it can

be rewritten as

UΛ(r) = JΛ(r)− ik

�
W +mc

2
�

c2�2

ˆ
dr�

�
Θ(r − r

�
)

�

Λ�

�
HΛ�(r)JΛ�(r�) (10.44)

−JΛ�(r)HΛ�(r�)
��

V (r�)UΛ(r�)

r>r
�

= JΛ(r)− ik

�
W +mc

2
�

c2�2
�

Λ�

HΛ�(r)
ˆ

dr�JΛ�(r�)V (r�)UΛ(r�)

+

�

Λ�

JΛ�(r) ik
�
W +mc

2
�

c2�2

ˆ
dr�(r)HΛ�(r�)V (r�)UΛ(r�)

� �� �
=βΛΛ�−δΛΛ� after eq. (10.35)

=

�

Λ�

JΛ�(r)βΛΛ� − ik

�
W +mc

2
�

c2�2
�

Λ�

ˆ
dr�HΛ�(r)JΛ�(r�)V (r�)UΛ(r�).

From eq. (9.37) we know the expansion for the free Dirac particle Green function, in
the case r > r

� it is given by

G
0
(r, r�;W ) = −ik

�
W +mc

2
�

c2�2
�

Λ

HΛ(r)JΛ(r�), (10.45)
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which, inserted into the equation above, yields

UΛ(r) =
�

Λ�

JΛ�(r)βΛΛ� +

ˆ
dr�G0

(r, r�;W )V (r�)UΛ(r�). (10.46)

By comparing this equation to the Lippmann-Schwinger equation that defines the
regular right hand side solution RΛ, eq. (10.13) it follows that

UΛ(r) =
�

Λ�

RΛ�(r)βΛΛ� . (10.47)

Inserting that into the preliminary expression eq. (10.42) that we found for the Green
function G yields

G(r, r�;W ) = K(r, r�;W )− ik

�
W +mc

2
�

c2�2
�

Λ�

RΛ(r)SΛ�(r�). (10.48)

Since K(r, r�) = 0 for r > r
� we obtain

G(r, r�;W ) = ik

�
W +mc

2
�

c2�2
�

Λ

RΛ(r)SΛ(r�) for r > r
�
. (10.49)

6. Rewriting the β matrix solution (r > r
�)

To complete the first part of the proof it remains to show that the definition for SΛ

in eq. (10.38) is equal to the one in eq. (10.16). In order to do so, we first define the
α matrix by

αΛ�Λ := δΛ�Λ − ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)RΛ�(r). (10.50)

Since this definition is, apart from different indices and a different prefactor, the same
as in the non-relativistic case, eq. (5.72) in section (5.8), we know in analogy to this
section that

α
−1

Λ�Λ = δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r). (10.51)

Now we first want to show that this matrix is equal to the β matrix defined in eq.
(10.35). In order to do so insert eq. (10.47) into eq. (10.35), yielding

βΛ�Λ = δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drHΛV (r)

�

Λ��

βΛ�Λ��RΛ��(r) (10.52)

which can equivalently be expressed in a matrix notation as

β = I + (I− α)β. (10.53)

Rearranging this matrix equation yields

β = α
−1 (10.54)

and hence

βΛ�Λ = δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
drSΛ(r)V (r)JΛ�(r). (10.55)
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7. Rewriting the irregular solution (r > r
�)

Now, using the new expression for the β matrix, we can rewrite the equation for the
irregular left hand side solution SΛ. We start from the defining Lippmann-Schwinger
equation, eq. (10.16)

SΛ(r) =
�

Λ�

βΛ�ΛHΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)G0
(r�, r;W ) (10.56)

and insert the expression for the β matrix into this equation:

SΛ(r) =

�

Λ�

�
δΛ�Λ + ik

�
W +mc

2
�

c2�2

ˆ
dr�SΛ(r�)V (r�)JΛ�(r�)

�
HΛ�(r) (10.57)

+

ˆ
dr�SΛ(r�)V (r�)G0

(r�, r;W )

= HΛ�(r) +
ˆ

dr�SΛ(r�)V (r�)
�
G

0
(r�, r;W )

+ik

�
W +mc

2
�

c2�2
�

Λ�

JΛ�(r�)HΛ�(r)
�
.

The term in square brackets is equal to K
0
(r�, r;W ) as defined in eq. (10.23), hence

SΛ(r) = HΛ(r) +
ˆ

dr�SΛ(r�)V (r�)K0
(r�, r;W ). (10.58)

This is a Volterra integral equation, which, according to section 5.7, has the solution

SΛ(r) = HΛ(r) +
ˆ

dr�HΛ(r�)V (r�)K(r�, r;W ) (10.59)

where the integration kernel K is defined by eq. (10.29).
8. Changes for the second case r

�
> r

The derivation of the second part of the Green function for the case r
�
> r goes

analogously to the first case. The Fredholm equation to start off now is given by

y(r) = f(r) +
ˆ

dr�y(r�)V (r�)G0
(r�, r;W ). (10.60)

Note that the order of the functions in the integrand has changed and the arguments
of G0 have also been interchanged. The Volterra form of this equation is given by

y(r) = f(r) +
�

cΛJΛ(r) +
ˆ

dr�y(r�)V (r�)K0
(r�, r;W ) (10.61)

where K
0 and cΛ are given by

K
0
(r,� r;W ) := G

0
(r�, r;W ) + ik

�
W +mc

2
�

c2�2
�

Λ

HΛ(r�)JΛ(r) (10.62)

cΛ := −ik

�
W +mc

2
�

c2�2

ˆ
drHΛ(r)V (r)y(r). (10.63)
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Following the steps from the first case and rewriting the equations then leads to the
result

G(r, r�;W ) = −ik

�
W +mc

2
�

c2�2
�

Λ�

SΛ(r)RΛ�(r�) for r
�
> r (10.64)

which, combined with eq. (10.49), gives the complete result

G(r, r�;W ) = −ik

�
W +mc

2
�

c2�2

�
�

Λ

Θ(r − r
�
)RΛ(r)SΛ(r�) + Θ (r

�
− r)SΛ(r)RΛ(r�)

�

(10.65)
and therefore completes the proof.

10.4 t Matrix and Phase Shift

The t matrix in the relativistic case (see also [60]) can be defined analogously to the
non-relativistic case, i.e. to eq. (5.34), as

tΛΛ� =

ˆ
drJΛ(r)V (r)RΛ�(r). (10.66)

The only difference to the non-relativistic case is, that the index L has been replaced
by the index Λ = (κ, µ) and, correspondingly, the relativistic wave functions and the
relativistic potential are inserted. The matrix elements, however, still remain scalar,
since JΛ is a 1× 4 vector, V a 4× 4 matrix and RΛ a 4× 1 vector.

The physical interpretation also remains unchanged compared to the non-relativistic
case: incoming waves with angular momentum index Λ are scattered to the angular
momentum channels Λ

� with an amplitude given by the element tΛΛ� .

In the (κ, µ) representation the t matrix is diagonal for non-magnetic systems if
the potential matrix V contains a spherical part only. That can be seen in figure
10.1a for the example of a tungsten impurity in a rubidium host, calculated with the
fully-relativistic code that I implemented within my thesis. Note that this matrix,
transformed into the (l,ml,ms) basis, would no longer be a diagonal matrix. The
structure is the same as found within a scalar-relativistic calculation with additional
spin-orbit coupling.

In a magnetic calculation, i.e. using a spin-dependent but still spherical potential,
additional non-diagonal elements occur in the t matrix. They form a structure
“parallel” to the diagonal, as shown in figure 10.1a. The same form has also been
presented by Ebert et al. [77].

When comparing the result of a non-magnetic full-potential calculation in fig. 10.2a
to the corresponding spherical potential calculation there is only little change in the
structure of the t matrix. Note, however, the logarithmic scale. A similar structure
does not mean that all the elements are exactly the same.



10.4 t Matrix and Phase Shift 95

Fig. 10.2b shows the result of a magnetic full-potential calculation. Here additional
non-diagonal elements can be observed. Rubidium has a body-centred cubic lattice
structure, and for this lattice type Strange et al. [78] give a general discussion of the
form of the t matrix. The large elements in the matrix shown here are in accordance
with their discussion. For the small elements (< 10

−8) there are deviations from their
calculated form. This, however, is due to a small numerical inaccuracy.
To obtain a representation that can be more intuitively interpreted, we will also
study the phase shift δΛ. This quantity describes the phase difference between the
incoming wave with angular momentum index Λ and the outgoing scattered wave
in the same angular momentum channel. Detailed descriptions can be found e.g. in
[79, 80]. Such a description is possible for a spherical potential, meaning that there
is no mixing between angular momentum channels, or in other words, where the t

matrix is diagonal. Fig. 10.3 schematically depicts the phase shift of an incoming
Bessel function jl.
For spherical potentials the following relation between the phase shift and the t matrix
holds:

k tΛΛ = −sin(δΛ)e
iδΛ .

Fig. 10.4 shows the result of a calculation with the single-site Dirac solver that I
implemented for the phase shifts of a tungsten impurity in a rubidium host. The
calculation was non-magnetic and for a spherical potential, as only then the resulting
t matrix is diagonal and the (non-generalised) phase shifts are defined. Interesting in
the figure is the splitting between the two d orbitals. Such a splitting can be observed
in relativistic calculations of heavy elements, as it depends on the spin-orbit coupling
strength and therefore increases with the atomic number Z. For example, Strange
et al. [81] found a similar splitting in calculations for platinum.
Another interesting quantity is the k-dependent t matrix, defined by its elements
T
msm

�
s

kk� . This matrix describes how an incoming wave with wave vector k and spin
quantum number ms is scattered into outgoing waves with wave vectors k� and spin
quantum numbers m

�
s and is defined as

T
msm

�
s

kk� :=

ˆ
drψ0

kms
(r)V (r)ψk�

m�
s
(r). (10.67)

This matrix can also be expressed in terms of the tΛΛ� matrix elements. In order to
show this, we insert the expansion of the free Dirac wave function, eq. (8.77), and the
expansion of the solution ψk�

m�
s
, eq. (10.9), into the definition above. This results in

T
msm

�
s

kk� =

ˆ
dr

�

ΛΛ�

��
W +mc

2

2W

� 1
2
�
4πi

l
C(l, j,

1

2
|µ−ms,ms)

�∗
Yl,µ−ms(k̂)

·

�
W +mc

2

2W

� 1
2
�
4πi

l
C(l

�
, j

�
,
1

2
|µ

�
−m

�
s,m

�
s)

�
Y

∗
l�,µ�−m�

s
(k̂)

·JΛ(r)V (r)RΛ�(r)
�
. (10.68)
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(a) Non-magnetic calculation with the spherically appproxim-
ated potential.

(b) Magnetic calculation with the spherically approximated
potential.

Figure 10.1: Logarithmic plot of the t matrix elements, calculated fully-relativistically with

a spherical potential for tungsten in a rubidium host in the (κ, µ) basis.
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(a) Non-magnetic calculation with the full potential.

(b) Magnetic calculation with the full potential.

Figure 10.2: Logarithmic plot of the t matrix elements, calculated fully-relativistically for

tungsten in a rubidium host in the (κ, µ) basis.
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Figure 10.3: Schematic plot of the phase shift. The blue curve depicts the radial part of

an incoming wave in an angular momentum decomposition, which is a Bessel function (here

for l = 1). The red, dashed curve is the large component R
t
ΛΛ of the scattered wave, with Λ

corresponding to the given l value. Such a simplified picture is valid for spherical potentials,

where there is no mixing of angular momentum channels.

Defining the coefficients

aΛ(k) =
�
W +mc

2

2W

� 1
2

4πi
l
C(l, j,

1

2
|µ−ms,ms)Y

∗
l,µ−ms

(k̂) (10.69)

it can be rewritten as

T
msm

�
s

kk� =

�

ΛΛ�

aΛ(k)a∗Λ�(k�
)

ˆ
drJΛ(r)V (r)RΛ�(r). (10.70)

The integral is by the definition in eq. (10.66) a tΛΛ� element, hence

T
msm

�
s

kk� =

�

ΛΛ�

aΛ(k)a∗Λ�(k�
)tΛΛ� . (10.71)

10.5 Angular Momentum Expansion of the Potential

The angular momentum expansion of the potential is somewhat tricky in the relativ-
istic case, thus we will devote a section to showing how it is done. This kind of
expansion is not possible for an arbitrary 4× 4 matrix but makes use of the property,
that the potential matrices V or

≈
V contain self-adjoint (or Hermitian) sub-matrices.

These sub-matrices are defined as

V
a
: =

�
V11 V12

V21 V22

�
= e

�
ϕ 0

0 ϕ

�
(10.72)

V
b
: =

�
V13 V14

V23 V24

�
= ce

�
−Az −Ax + iAy

−Ax − iAy +Az

�
(10.73)

V
c
: =

�
V31 V32

V41 V42

�
= ce

�
−Az −Ax + iAy

−Ax − iAy +Az

�
(10.74)

V
d
: =

�
V33 V34

V43 V44

�
= e

�
ϕ 0

0 ϕ

�
(10.75)
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Figure 10.4: Phase shifts for tungsten in a rubidium host in a non-magnetic calculation

with a spherical potential, which means that the tΛΛ entries are the same for a given κ value.

Plotted here are the values corresponding to the indices 1 to 18 in table 7.2b, corresponding

to the given five orbitals.

so that the potential, cf. eq. (6.12), can be written as

V =

�
V

a
V

b

V
c

V
d

�
. (10.76)

Analogously, the potential
≈
V that uses a B field instead of the vector potential A, cf.

eq. (6.14), is made up of the sub-matrices

≈
V

a

: =




≈
V 11

≈
V 12

≈
V 21

≈
V 22



 =

�
eϕ− µBz −µBx + iµBy

−µBx − iµBy eϕ+ µBz

�
(10.77)

≈
V

b

: =




≈
V 13

≈
V 14

≈
V 23

≈
V 24



 = 0 (10.78)

≈
V

c

: =

� ≈
V 31

≈
V 32

V41 V42

�
= 0 (10.79)

≈
V

d

: =




≈
V 33

≈
V 34

≈
V 43

≈
V 44



 =

�
eϕ+ µBz µBx − iµBy

µBx + iµBy eϕ− µBz

�
(10.80)
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and can consequently be written as

≈
V =




≈
V

a ≈
V

b

≈
V

c ≈
V

d



 . (10.81)

Now, the important thing to note is that for ϕ, A and B being real, all the sub-matrices
are Hermitian:

V
x
= V

x†
,

≈
V

x

=

≈
V

x†
, x = a, b, c, d. (10.82)

We will now continue with the potential V . However, as
≈
V also fulfils the property

above, an analogous treatment is possible for this representation of the potential.

Exploiting a general property of Hermitian matrices, namely that they can be
decomposed into their eigenvalues and eigenvectors, we can write

V
x
=

2�

i=1

λ
x

i u
x

i u
x†
i

(10.83)

where {ux
1
, u

x

2
} are an orthonormal set of eigenvectors of V x forming a basis of the

matrix’s eigenvalue spectrum, and {λx

1
, λ

x

2
} are the corresponding eigenvalues. Using

orthogonal but not necessarily normalised vectors, we can generalise

V
x
=

2�

i=1

λ
x

i

�ux
i
�
2
u
x

i u
x†
i

(10.84)

Digression: The spin spherical harmonics χΛ are 2× 1 column
vector functions depending on the two angular variables r̂ = (θ,φ ).
They form an orthonormal basis of the vector space of square
integrable two-vector functions f on the surface of the unit sphere:

�
f1

f2

�
: [0, π)× [−π,π ) → C2

, (θ,φ ) �→

�
f1(θ,φ )

f2(θ,φ )

�

with the scalar product given by �f, g� :=
´
dr̂f †

(r̂)g(r̂). Hence,
any function in that vector space can be expanded in terms of
spin spherical harmonics: f(r̂) =

�
Λ
νΛχΛ(r̂). If the function f

depends not only on the angular but also on the radial variable, the
coefficients νΛ have a radial dependence: f(r) =

�
Λ
νΛ(r)χΛ(r̂).

Now let us take the eigenvalue λ
a

i
(r) one of the two eigenvectors u

a

i
(r). Exploiting

the fact that there exists a χΛ-expansion of λa

i
u
a

i
, we write:

λ
a

i (r)u
a

i (r) =
�

Λ

ν
a

iΛ(r)χΛ(r̂) where ν
a

iΛ(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i (r)u
a

i (r). (10.85)
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One could also write this in Dirac notation as

|u
a

i � =

�

Λ

|χΛ� �χΛ |u
a

i � . (10.86)

Obviously, the same is valid for the adjoint of the eigenvector (that is not multiplied
by the eigenvalue)

u
a†
i
(r) =

�

Λ

ν̃
a

iΛ(r)χ
†
Λ
(r̂) where ν̃

a

iΛ(r) =

�ˆ
dr̂χ†

Λ
(r̂)uai (r)

�∗
=

ˆ
dr̂ua†

i
(r)χΛ(r̂)

(10.87)
or in Dirac notation

�u
a

i | =

�

Λ

�χΛ| �u
a

i |χΛ� , (10.88)

as it follows simply by forming the adjoint equation. That means we can write

λ
a

i (r)u
a

i (r)u
a†
i
(r) =

�
�

Λ

ν
a

iΛ(r)χΛ(r̂)

��
�

Λ�

ν̃
a

iΛ�(r)χ
†
Λ�(r̂)

�

=

�

Λ

�

Λ�

ν
a

iΛ(r)ν̃
a

iΛ�(r)χΛ(r̂)χ†
Λ�(r̂) (10.89)

Thus the 2× 2 sub-matrices can be expanded as

V
a
(r) =

2�

i=1

�

Λ

�

Λ�

ν
a

iΛ(r)ν̃
a

iΛ�(r)χΛ(r̂)χ†
Λ�(r̂)

=

�

Λ

�

Λ�

�
2�

i=1

ν
a

iΛ(r)ν̃
a

iΛ�(r)

�
χΛ(r̂)χ†

Λ�(r̂)

=

�

Λ

�

Λ�

v
a

ΛΛ�(r)χΛ(r̂)χ†
Λ�(r̂) (10.90)

defining the term in brackets as

v
a

ΛΛ�(r) :=

2�

i=1

ν
a

iΛ(r)ν̃
a

iΛ�(r) =

2�

i=1

�ˆ
dr̂χ†

Λ
(r̂)λa

i (r)u
a

i

��ˆ
dr̂ua†

i
(r̂)χΛ�(r̂)

�
.

(10.91)
For the other sub-matrices the expansions are similar, however they are not exactly
the same. For x = b the term λ

b

i
u
b

i
is expanded as before in the case x = a, however

the part ub†
i

is expanded using χ
Λ

instead of χΛ. This is done just to obtain a simple
notation in the end. For x = c, d changes are similar. Here is an overview of the
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different coefficients:

ν
a

iΛ(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i (r)u
a

i (r), ν̃
a

iΛ(r) =

ˆ
dr̂ua†

i
(r)χΛ(r̂) (10.92)

ν
b

iΛ(r) =

ˆ
dr̂χ†

Λ
(r̂)λb

i(r)u
b

i(r), ν̃
b

iΛ(r) =

ˆ
dr̂ub†

i
(r)χ

Λ
(r̂) (10.93)

ν
c

iΛ(r) =

ˆ
dr̂χ†

Λ
(r̂)λc

i (r)u
c

i (r), ν̃
c

iΛ(r) =

ˆ
dr̂uc†

i
(r)χΛ(r̂) (10.94)

ν
d

iΛ(r) =

ˆ
dr̂χ†

Λ
(r̂)λd

i (r)u
d

i (r), ν̃
d

iΛ(r) =

ˆ
dr̂ud†

i
(r)χ

Λ
(r̂) (10.95)

v
a
ΛΛ�(r) =

2�

i=1

ν
a
iΛ(r)ν̃

a
iΛ�(r) =

2�

i=1

�ˆ
dr̂χ

†
Λ(r̂)λ

a
i (r)u

a
i

��ˆ
dr̂u

a†
i (r̂)χΛ�(r̂)

�
(10.96)

v
b
ΛΛ�(r) =

2�

i=1

ν
b
iΛ(r)ν̃

b
iΛ�(r) =
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i=1

�ˆ
dr̂χ

†
Λ(r̂)λ

b
i (r)u

b
i

��ˆ
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b†
i (r̂)χΛ

�(r̂)

�
(10.97)

v
c
ΛΛ�(r) =

2�
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ν
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iΛ(r)ν̃

c
iΛ�(r) =
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i=1

�ˆ
dr̂χ

†
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c
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c†
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�
(10.98)

v
d
ΛΛ�(r) =

2�

i=1

ν
d
iΛ(r)ν̃

d
iΛ�(r) =

2�

i=1

�ˆ
dr̂χ

†
Λ
(r̂)λ

d
i (r)u

d
i

��ˆ
dr̂u

d†
i (r̂)χΛ

�(r̂)

�
(10.99)

As a consequence of these decompositions of the sub-matrices, there exists a decom-
position of the whole potential matrix V :

V (r) =

�

Λ

�

Λ�

�
v
a

ΛΛ�(r)χΛ(r̂)χ†
Λ�(r̂) v

b

ΛΛ�(r)χΛ(r̂)χ†
Λ
�(r̂)

v
c

ΛΛ�(r)χΛ
(r̂)χ†

Λ�(r̂) v
d

ΛΛ�(r)χΛ
(r̂)χ†

Λ
�(r̂)

�
(10.100)

=

�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
v
a

ΛΛ�(r) v
b

ΛΛ�(r)

v
c

ΛΛ�(r) v
d

ΛΛ�(r)

��
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�

We will later on make use of this expansion for separating the radial and angular part
of the Lippmann-Schwinger equation.

To have an explicit expression as it can be programmed, we evaluate the products
and get

V =

�

Λ

�

Λ�





v
a

ΛΛ�χΛ(1)χ
∗
Λ�(1) v

a

ΛΛ�χΛ(1)χ
∗
Λ�(2) v

b

ΛΛ�χΛ(1)χ
∗
Λ
�
(1)

v
b

ΛΛ�χΛ(1)χ
∗
Λ
�
(2)

v
a

ΛΛ�χΛ(2)χ
∗
Λ�(1) v

a

ΛΛ�χΛ(2)χ
∗
Λ�(2) v

b

ΛΛ�χΛ(2)χ
∗
Λ
�
(1)

v
b

ΛΛ�χΛ(2)χ
∗
Λ
�
(2)

v
c

ΛΛ�χΛ(1)
χ
∗
Λ�(1) v

c

ΛΛ�χΛ(1)
χ
∗
Λ�(2) v

d

ΛΛ�χΛ(1)
χ
∗
Λ
�
(1)

v
d

ΛΛ�χΛ(1)
χ
∗
Λ
�
(2)

v
c

ΛΛ�χΛ(2)
χ
∗
Λ�(1) v

c

ΛΛ�χΛ(2)
χ
∗
Λ�(2) v

d

ΛΛ�χΛ(2)
χ
∗
Λ
�
(1)

v
d

ΛΛ�χΛ(2)
χ
∗
Λ
�
(2)





(10.101)
were χΛ(1) and χΛ(2) are the two components of the spin spherical harmonic function.



10.5 Angular Momentum Expansion of the Potential 103

Apart from the theoretical aspect that this expansion is possible, the coefficients vx
ΛΛ� ,

as defined in eq. (10.91), are also explicitly needed for calculations. It is therefore
necessary to calculate all the eigenvectors u

x

i
and eigenvalues λ

x

i
of the sub-matrices

V
x. When using the potential

≈
V , these eigenvalues and eigenvectors are (obviously)

different, so the coefficients v
x

ΛΛ� are also modified compared to the exact theory.

Explicit calculations of the eigenvectors and eigenvalues for the potential V yield:

u
a

1 =

�
0

1

�
, u

a

2 =

�
1

0

�
(10.102)

λ
a

1 = λ
a

2 = eϕ (10.103)

u
b

1 =

�
−Ax+iAy

|A|+Az

1

�
, u

b

2 =

�
−Ax+iAy

−|A|+Az

1

�
(10.104)

λ
b

1 = e |A| , λ
b

2 = −e |A| (10.105)

u
c

i = u
b

i , λ
c

i = λ
b

i , u
d

i = u
a

i , λ
d

i = λ
a

i . (10.106)

When using the potential
≈
V the explicit expressions are

u
a

1 =

�
−Bx+iBy

|B|+Bz

1

�
, u

a

2 =

�
−Bx+iBy

−|B|+Bz

1

�
(10.107)

λ
a

1 = eϕ+ µ |B| , λ
a

2 = eϕ− µ |B| (10.108)

u
d

1 =

�
Bx−iBy

|B|−Bz

1

�
, u

d

2 =

�
Bx−iBy

−|B|−Bz

1

�
(10.109)

λ
d

1 = eϕ+ µ |B| , λ
d

2 = eϕ− µ |B| (10.110)

u
b

1 = u
c

1 =

�
0

1

�
, u

b

2 = u
c

2 =

�
1

0

�
(10.111)

λ
b

i = λ
c

i = 0. (10.112)

These eigenvectors are not yet normalised, i.e. in the calculation one has to replace
these explicit expressions for ui by ui/ �ui�.
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10.6 Coupled Radial Equations for Full-Potential Spin-Polarised
KKR

As we have seen in section 10.3, once the regular and irregular solutions of the
Dirac equation for the particle in a potential are known, the Green function can be
calculated by using an expansion into those solutions. The latter can be calculated
from the Lippmann-Schwinger equations (10.13) – (10.16). In order to do so, we will
use a further angular momentum expansion, i.e. the potential and the Green function
are expanded. This will result in coefficients RΛΛ� from which the regular solutions
RΛ can be calculated.

We start off expanding RΛ in terms of spin spherical harmonics:

RΛ(r) =
�

Λ�

�
R

a

Λ�Λ(r)χΛ�(r̂)
iR

b

Λ�Λ(r)χΛ
�(r̂)

�
=

�

Λ�

�
χΛ�(r̂) 0

0 χ
Λ
�(r̂)

��
R

a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
.

(10.113)
As we know that the spin spherical harmonics χΛ are 2 × 1 column vectors, the
expression at the right hand side is a 4× 2 matrix times a 2× 1 column vector (Rt

Λ�Λ
and R

t

Λ�Λ are scalar functions), thus yielding a 4× 1 column vector. That is what
the solution of the Dirac equation RΛ (here in angular momentum representation)
should be.

From eq. (8.55) we know we can write

JΛ(r) =
�

J
a

Λ
(r)χΛ(r̂)

iJ
b

Λ
(r)χ

Λ
(r̂)

�
=

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
J
a

Λ
(r)

iJ
b

Λ
(r)

�
(10.114)

where the following definition was made:

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
:=

�
jl(kr)

ikc�·sign(κ)
W+mc2

j
l
(kr)

�
. (10.115)

Using eq. (9.28) we can write the Green function as G
0
(r, r�;W ) =

−
ik

�
W +mc

2
�

c2�2
�

Λ

�
G

a

Λ
(r, r

�
)χΛ(r̂)χ†

Λ
(r̂�) iG

b

Λ
(r, r

�
)χΛ(r̂)χ†

Λ
(r̂�)

iG
c

Λ
(r, r

�
)χ

Λ
(r̂)χ†

Λ
(r̂�) G

d

Λ
(r, r

�
)χ

Λ
(r̂)χ†

Λ
(r̂�)

�

= −
ik

�
W +mc

2
�

c2�2
�

Λ

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

�

·

�
G

a

Λ
(r, r

�
) iG

b

Λ
(r, r

�
)

iG
c

Λ
(r, r

�
) G

d

Λ
(r, r

�
)

��
χ
†
Λ
(r̂�) 0

0 χ
†
Λ
(r̂�)

�
(10.116)
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with the definition
�

G
a

Λ
(r, r

�
) iG

b

Λ
(r, r

�
)

iG
c

Λ
(r, r

�
) G

d

Λ
(r, r

�
)

�
:=

Θ(r − r
�
)

�
hl(kr)jl(kr

�
)

−ic�ksign(κ)
(W+mc2)

hl(kr)jl(kr
�
)

ic�ksign(κ)
(W+mc2)

h
l
(kr)jl(kr

�
)

c
2�2k2

(W+mc2)
2hl(kr)jl(kr

�
)

�

+Θ(r
�
− r)

�
hl(kr

�
)jl(kr)

−ic�ksign(κ)
(W+mc2)

hl(kr
�
)j

l
(kr)

ic�ksign(κ)
(W+mc2)

h
l
(kr

�
)jl(kr)

c
2�2k2

(W+mc2)
2hl(kr

�
)j

l
(kr)

�
.(10.117)

Note that this matrix has dimension 2×2, whereas the full Green function G
0
(r, r�;W )

is a 4× 4 matrix. As the matrix of spin spherical harmonics multiplied from the left
has dimensions 4 × 2 and the one multiplied from the right has dimensions 2 × 4,
everything is well-defined.

And last but not least the potential is expanded in the following form:

V (r) =
�

Λ

�

Λ�

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
v
a

ΛΛ�(r) v
b

ΛΛ�(r)

v
c

ΛΛ�(r) v
d

ΛΛ�(r)

��
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�
.

(10.118)
We continue from is the Lippmann-Schwinger equation (10.13)

RΛ(r) = JΛ(r) +
ˆ

dr�G0
(r, r�;W )V (r�)RΛ(r�). (10.119)

Inserting all the expansion into this equation yields

�

Λ5

�
χΛ5(r̂) 0

0 χ
Λ
5(r̂)

��
R

a

Λ5Λ
(r)

iR
b

Λ5Λ
(r)

�

=

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
J
a

Λ
(r)

iJ
b

Λ
(r)

�
−

ik
�
W +mc

2
�

c2�2

·

ˆ
dr�

�

Λ

�
χΛ(r̂) 0

0 χ
Λ
(r̂)

��
G

a

Λ
(r, r

�
) iG

b

Λ
(r, r

�
)

iG
c

Λ
(r, r

�
) G

d

Λ
(r, r

�
)

��
χ
†
Λ
(r̂�) 0

0 χ
†
Λ
(r̂�)

�

·

�

Λ2Λ3

�
χΛ2(r̂�) 0

0 χ
Λ
2(r̂�)

��
v
a

Λ2Λ3(r
�
) v

b

Λ2Λ3(r
�
)

v
c

Λ2Λ3(r
�
) v

d

Λ2Λ3(r
�
)

��
χ
†
Λ3(r̂�) 0

0 χ
†
Λ
3(r̂�)

�

·

�

Λ4

�
χΛ4(r̂�) 0

0 χ
Λ
4(r̂�)

��
R

a

Λ4Λ
(r

�
)

iR
b

Λ4Λ
(r

�
)

�

Now multiplying by the matrix

�
χ
†
Λ�(r̂) 0

0 χ
†
Λ
�(r̂)

�
from the left, integrating by r̂
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and using the orthonormality of the spin spherical harmonics yields the equation
�

R
a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
=

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
δΛΛ�

−
ik

�
W +mc

2
�

c2�2

ˆ
dr�

�
G

a

Λ�(r, r
�
) iG

b

Λ�(r, r
�
)

iG
c

Λ�(r, r
�
) G

d

Λ�(r, r
�
)

��
χ
†
Λ�(r̂�) 0

0 χ
†
Λ
�(r̂�)

�

·

�

Λ2Λ3

�
χΛ2(r̂�) 0

0 χ
Λ
2(r̂�)

��
v
a

Λ2Λ3(r
�
) v

b

Λ2Λ3(r
�
)

v
c

Λ2Λ3(r
�
) v

d

Λ2Λ3(r
�
)

��
χ
†
Λ3(r̂�) 0

0 χ
†
Λ
3(r̂�)

�

·

�

Λ4

�
χΛ4(r̂�) 0

0 χ
Λ
4(r̂�)

��
R

a

Λ4Λ
(r

�
)

iR
b

Λ4Λ
(r

�
)

�
(10.120)

From now on it is necessary to assume that we are using the potential ˜̃
V with a B

field and not one with a full vector field A. If that is the case, it is vb
Λ2Λ3 = v

c

Λ2Λ3 = 0,
i.e. the 2×2 potential matrix only has diagonal entries and consequently it commutes
with the matrices containing spin spherical harmonics. Therefore, one can take out
the sums, write all the spin spherical harmonic matrices in a row and then write all
the spin spherical harmonics into one matrix:

�
R

a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
=

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
δΛΛ�

−
ik

�
W +mc

2
�

c2�2

ˆ
dr�

�
G

a

Λ�(r, r
�
) iG

b

Λ�(r, r
�
)

iG
c

Λ�(r, r
�
) G

d

Λ�(r, r
�
)

�

·

�

Λ2Λ3Λ4

�
χ
†
Λ�(r̂)χΛ2(r̂�)χ†

Λ3(r̂�)χΛ4(r̂�) 0

0 χ
†
Λ
�(r̂)χ

Λ
2(r̂�)χ†

Λ
3(r̂�)χ

Λ
4(r̂�)

�

·

�
v
a

Λ2Λ3(r
�
) 0

0 v
d

Λ2Λ3(r
�
)

��
R

a

Λ4Λ
(r

��
)

iR
b

Λ4Λ
(r

��
)

�
.

Separating angular and radial integral parts, this can be rewritten as:
�

R
a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
=

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
δΛΛ�

−
ik

�
W +mc

2
�

c2�2
�

Λ2Λ3Λ4

ˆ
dr

�
r
�2
�

G
a

Λ�(r, r
�
) iG

b

Λ�(r, r
�
)

iG
c

Λ�(r, r
�
) G

d

Λ�(r, r
�
)

�

·

�ˆ
dr̂�

�
χ
†
Λ�(r̂)χΛ2(r̂�)χ†

Λ3(r̂�)χΛ4(r̂�) 0

0 χ
†
Λ
�(r̂)χ

Λ
2(r̂�)χ†

Λ
3(r̂�)χ

Λ
4(r̂�)

��

·

�
v
a

Λ2Λ3(r
�
) 0

0 v
d

Λ2Λ3(r
�
)

��
R

a

Λ4Λ
(r

��
)

iR
b

Λ4Λ
(r

��
)

�
.

Now, in analogy to the Gaunt coefficients in the non-relativistic case, the coefficient
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matrices
�

DΛ�Λ2Λ3Λ4 0

0 D
Λ
�
Λ
2
Λ
3
Λ
4

�

are defined where

DΛ�Λ2Λ3Λ4 :=

ˆ
dr̂�χ†

Λ�(r̂�)χΛ2(r̂�)χ†
Λ3(r̂�)χΛ4(r̂�) (10.121)

Using these coefficients the equation can already be written as an exclusively radial
equation. However, there are still three sums. By defining new potential coefficients
given by

�
w

a

Λ�Λ4(r
�
) 0

0 w
d

Λ�Λ4(r
�
)

�
:=

�

Λ2Λ3

�
DΛ�Λ2Λ3Λ4v

a

Λ2Λ3(r
�
) 0

0 D
Λ
�
Λ
2
Λ
3
Λ
4v

d

Λ2Λ3(r
�
)

�

(10.122)

it can be simplified to the form
�

R
a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
=

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
δΛΛ�

−
ik

�
W +mc

2
�

c2�2
�

Λ2Λ3Λ4

ˆ
dr

�
r
�2
�

G
a

Λ�(r, r
�
) iG

b

Λ�(r, r
�
)

iG
c

Λ�(r, r
�
) G

d

Λ�(r, r
�
)

�

·

�
w

a

Λ�Λ4(r
�
) 0

0 w
d

Λ�Λ4(r
�
)

��
R

a

Λ4Λ
(r

��
)

iR
b

Λ4Λ
(r

��
)

�

For convenience we rename Λ
4 → Λ

��.

The coupled radial relativistic Lippmann-Schwinger equations are given by
�

R
a

Λ�Λ(r)

iR
b

Λ�Λ(r)

�
=

�
J
a

Λ
(r)

iJ
b

Λ
(r)

�
δΛΛ�

−
ik

�
W +mc

2
�

c2�2

ˆ
dr

�
r
�2
�

G
a

Λ�(r, r
�
) iG

b

Λ�(r, r
�
)

iG
c

Λ�(r, r
�
) G

d

Λ�(r, r
�
)

�
(10.123)

·

�

Λ��

�
w

a

Λ�Λ��(r
�
) 0

0 w
d

Λ�Λ��(r
�
)

��
R

a

Λ��Λ(r
�
)

iR
b

Λ��Λ(r
�
)

�
.

The section is concluded with a closer look at the D coefficients. They are coefficients
not depending on the position r, i.e. the integrals can be calculated once and
the values can be stored, without the need to calculate the integrals every time
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a Lippmann-Schwinger equation needs to be solved. The D coefficients have four
indices, which means that for calculations up to Λcut one has to store Λ

4
cut values.

If, for example, lcut = 3 is chosen as the maximal l value in the calculation, Λ goes
up to Λcut = 32. However, to include also the Λ coefficients, one has to go up to
Λcut = 40. Storing all the 40

4
= 2560000 coefficients yields a file size of roughly 90

MB (18 digits precision for non-zero values). This is still an acceptable size. However,
for calculations using large l values, the following trick might be of interest.

Starting from the definition the integral is written as a double integral:

DΛ�Λ2Λ3Λ4 : =

ˆ
dr̂χ†

Λ�(r̂)χΛ2(r̂)χ†
Λ3(r̂)χΛ4(r̂)

=

ˆ
dr̂
ˆ

dr̂�χ†
Λ�(r̂)χΛ2(r̂)δ(r̂ − r̂�)χ†

Λ3(r̂�)χΛ4(r̂�). (10.124)

Inserting the completeness relation of the spin spherical harmonics
�

Λ

χ
†
Λ
(r̂)χΛ(r̂�) = δ(r̂ − r̂�) (10.125)

one can rewrite

DΛ�Λ2Λ3Λ4 : =

ˆ
dr̂
ˆ

dr̂�χ†
Λ�(r̂)χΛ2(r̂)

�

Λ

χ
†
Λ
(r̂)χΛ(r̂�)χ†

Λ3(r̂�)χΛ4(r̂�) (10.126)

=

�

Λ

�ˆ
dr̂χ†

Λ�(r̂)χΛ2(r̂)χ†
Λ
(r̂)

��ˆ
dr̂�χΛ(r̂�)χ†

Λ3(r̂�)χΛ4(r̂�)
�
.

Defining new coefficients

dΛΛ2Λ� :=

ˆ
dr̂χΛ(r̂)χ†

Λ2(r̂)χΛ�(r̂) (10.127)

which are 2× 1 vectors and have the property

d
†
ΛΛ2Λ� =

ˆ
dr̂χ†

Λ�(r̂)χΛ2(r̂)χ†
Λ
(r̂) (10.128)

the equation can be written as

DΛ�Λ2Λ3Λ4 =

�

Λ

d
†
ΛΛ2Λ�dΛΛ3Λ4 . (10.129)

Hence, using the d coefficients, one has the chance to store only Λ
3
cut instead of Λ4

cut

values, however, with the disadvantage of having to calculate the sum of equation
(10.129) for each quadruple of

�
Λ
�
,Λ

1
,Λ

2
,Λ

3
�

values.

The d coefficients can also be boiled down to sums over Clebsch-Gordan coefficients
and Gaunt coefficients by writing the spin spherical harmonics in terms of spherical
harmonics and replacing the occurring Gaunt coefficient terms.
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10.7 Coupled Radial Equations for Full-Potential Spin-Current KKR

Fully relativistic calculations where the vector field A is not replaced by a magnetic
field B are termed spin-current density functional theory. When using a magnetic
field B the self-consistency circle is run for a spin-up potential V ↑ and a spin-down
potential V ↓. From these two potentials one can calculate ϕ(r) and B(r). Since a
scalar-relativistic code needs the same two potentials, the necessary modifications in
the KKR code to embed a fully relativistic single-site solver (given that the solver
already exists) are small. In spin-current calculations, however, the self-consistency
circle has to be run for the potentials A and ϕ, which means that the whole KKR
code needs to be modified to embed a fully relativistic spin-current single-site solver.
A further difficulty is that the exchange-correlation potential for spin-current DFT is
still under development.

Therefore, in the solver I implemented I used the approximation of a B field. Nonethe-
less, here I will present the coupled radial equations for a fully-relativistic full-potential
spin-current single-site solver. The additional effort for the single-site problem is man-
ageable and thus it might be interesting in the future to implement these equations.

I start from eq. (10.120). As the v
b and v

c coefficients are no longer vanishing, the
next matrices do not any more nicely commute as they did before. However, the
equation can be rewritten as
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Separating radial and spherical integral parts is still possible:
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Using the relativistic equivalent of the Gaunt-coefficients that I introduced in eq.
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(10.121), this can be written as
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Now I define the new potential coefficients as
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(10.130)
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yielding the coupled radial equations (after renaming Λ
4 → Λ

��.):

The coupled radial relativistic Lippmann-Schwinger equations for full-potential spin-
current calculations are given by

�
R

a

Λ�Λ(r)

iR
b
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)
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(10.131)

·
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Λ��
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Λ��Λ(r
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)

�
.

These equation have the same form as the ones in eq. (10.123) except that the
potential matrix does not any more have zero blocks.
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10.8 Decoupled Radial Equations for a Spherical Potential without
a Magnetic Field

For the special case of a spherical potential ϕ(r) = ϕ(r) without a magnetic field
(B = 0) the coefficients vΛΛ�(r) and wΛΛ�(r) have a simple form that can be calculated
analytically. This can extremely speed up the calculation for this special case – there
is no need to calculate the coefficients DΛ�Λ2Λ3Λ4 numerically and no angular integrals
which would need to be calculated numerically. Furthermore, it forms a way to test
a code designed for the general case and is good as an example to understand the
procedure in the general setup.

The potential matrix for this special case has the simple form

V (r) =





eϕ(r)

eϕ(r)

eϕ(r)

eϕ(r)



 (10.132)

and thus the eigenvectors and eigenvalues are

u
a

1 =

�
0

1

�
, u

a

2 =

�
1

0

�
, λ

a

1(r) = λ
a

2(r) = eϕ(r) (10.133)

u
d

1 =

�
1

0

�
, u

d

2 =

�
0

1

�
, λ

d

1(r) = λ
d

2(r) = eϕ(r). (10.134)

All the other eigenvalues are zero. As the eigenvectors are constant and the eigenvalues
have no angular dependence, they can be taken out of the integral when calculating
the νiΛ coefficients, for example

ν
a

1Λ(r) =

ˆ
dr̂χ†

Λ
(r̂)λa

i (r)u
a

i (r) (10.135)

=

�ˆ
dr̂χ†

Λ
(r̂)

�
· eϕ(r)

�
0

1

�
. (10.136)

Now first look at the cases Λ ∈ {1, 2}. These are the only two values with l = 0 and
m = 0. The integral of the spherical harmonic function Y0,0 = 1/

√
4π is given by

ˆ
dr̂Y0,0(r̂) =

√
4π. (10.137)

From table 7.1 it is known that

χ1(r̂) =
�

Y0,0(r̂)
0

�
, χ2(r̂) =

�
0

Y0,0(r̂)

�
(10.138)

and thus it isˆ
dr̂χ†

1
(r̂) =

� √
4π 0

�
,

ˆ
dr̂χ†

2
(r̂) =

�
0

√
4π

�
. (10.139)
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For all values Λ > 2 the integral of the spin spherical harmonics is zero. This can
easily be seen from the orthonormality relation of a spherical harmonic Yl,m with
Y0,0 :

1
√
4π

ˆ
dr̂Y ∗

l,m
(r̂) =

ˆ
dr̂Y ∗

l,m
(r̂)Y0,0(r̂) = δl,0δm,0

=⇒

ˆ
dr̂Y ∗

l,m
(r̂) = 0 for (l,m) �= (0, 0) . (10.140)

Hence, the integral of the spin spherical harmonics for Λ > 2 is also vanishing:
ˆ

dr̂χΛ(r̂) = 0,

ˆ
dr̂χ†

Λ
(r̂) = 0 forΛ > 2. (10.141)

The other νiΛ-coefficients can be calculated analogously. After that the vΛΛ�-
coefficients can be calculated to be:

v
a

ΛΛ�(r) = v
d

ΛΛ�(r) =

�
4πeϕ(r), Λ = Λ

�
, Λ ∈ {1, 2}

0, otherwise
(10.142)

v
b

ΛΛ�(r) = v
c

ΛΛ�(r) = 0 ∀Λ,Λ
�
.

The last step is to calculate the wΛΛ�-coefficients. Inserting the result above into the
general formula yields

w
a

Λ�Λ4(r) =

�
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Λ3

DΛ�Λ2Λ3Λ4vΛ2Λ3(r)

=
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= (DΛ�11Λ4 +DΛ�22Λ4) 4πeϕ(r). (10.143)

In the first step the property of the vΛΛ�-coefficients was used, that for Λ �= Λ
� the

coefficients vanish. In the second step the property that all coefficients for Λ > 2

vanish was used. The D-coefficients are calculated via
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DΛ�22Λ4 =
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�

0 0

0
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�
χΛ4(r̂) (10.145)
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and thus

(DΛ�11Λ4 +DΛ�22Λ4) =

ˆ
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1
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=
1

4π
δΛ�Λ4 . (10.146)

Inserting that into the formula for the wΛΛ�-coefficients yields

w
a

Λ�Λ4(r) =
1

4π
δΛ�Λ44πeϕ(r) = eϕ(r)δΛ�Λ4 . (10.147)

In analogy we have

w
d

Λ�Λ4(r) =

�
D

Λ
�
22Λ

4 +D
Λ
�
11Λ

4

�
4πeϕ(r) = eϕ(r)δ

Λ
�
Λ
4

= eϕ(r)δΛ�Λ4 . (10.148)

This result means that all values for Λ
� �= Λ

4 vanish, which is important inasmuch
as it means that the coupled radial Lippmann-Schwinger equations decouple in the
case of a spherical potential without a B field. This decoupling is also found in the
non-relativistic case of a spherical potential. When solving the single-site problem
computationally, the coupling of the Lippmann-Schwinger equations results in a
huge matrix that needs to be inverted. The inversion makes up a great part of the
necessary computational effort, together with the calculation of the wΛΛ�-coefficients
in the potential expansion. As both steps turn out obsolete in the case of a spherical
scalar potential, it explains why this case is much simpler, both theoretically and
with respect to the necessary computational effort, and therefore many investigations
are limited to this special case.

10.9 From Fredholm to Volterra Representation

The Lippmann-Schwinger equations derived in sections 10.6 and 10.7 contain two
types of radial integrals, one that goes from 0 to r and another one that goes from r

to S, where S is a sphere outside which the potential vanishes. For computational
implementation it is favourable to have only one type of integral to solve. Hence, in
this section the integral is rewritten to a Volterra equation, i.e. two integrals both
with integration domain from 0 to r. The technique for rewriting the integral is the
same as in section 10.3 in the first step of the proof.

Let us first insert the explicit form of the Green function, eq. (10.117), into the radial
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Lippmann-Schwinger equations (10.123), yielding:
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Taking the parts that do not depend on r
� out of the integral, the equation can be

rewritten as
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Now we use bold symbols for denoting two-entry vectors and 2 × 2 matrices and
define23

RΛ�Λ(r) :=

�
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iR
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This allows us to rewrite the equation:
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Now we want to rewrite this mixed Fredholm equation into a Volterra equation. We
start making the following definitions
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which allow us to write the Fredholm equation as

RΛ�Λ(r) = AΛ�Λ(r)JΛ�(r) +BΛ�Λ(r)HΛ�(r). (10.158)

In order to have integrals running from 0 to r only, we rewrite AΛ�Λ as follows:
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23In my computational implementation the factor (W +mc
2)/(c2�2) is taken into the definition

of the potential V to be consistent with the convention of the scalar relativistic solver.
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Note that AΛ�Λ(0) is constant. Apart from the matrices A, B and R we also want to
define the matrix

β̃ := A
−1

(0) or (10.160)
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This matrix is defined analogously to the matrix α = β
−1 in eq. (10.50). It is not

the same though, as the functions here are vectors with two entries instead of four.

Furthermore we define another three matrices by multiplying the first three matrices
from the right hand side by β̃

Ã(r) := A(r)β̃ (10.162)
B̃(r) := B(r)β̃ (10.163)
U(r) := R(r)β̃ (10.164)

Explicitly written the entries are

ÃΛ�Λ(r) :=

�

Λ��

AΛ�Λ��(r)β̃Λ��Λ

= δΛΛ� − ik

�
W +mc

2
�

c2�2

ˆ
r

0

dr
�
r
�2HΛ�(r

�
)

�

Λ��

VΛ�Λ��(r
�
)UΛ��Λ(r

�
) (10.165)

B̃Λ�Λ(r) :=

�

Λ��

BΛ�Λ��(r)β̃Λ��Λ

= −ik

�
W +mc

2
�

c2�2

ˆ
r

0

dr
�
r
�2JΛ(r

�
)

�

Λ��

VΛ�Λ��(r
�
)UΛ��Λ(r

�
). (10.166)

Thus we get the equation

UΛ�Λ(r) = JΛ�(r)ÃΛ�Λ(r) + HΛ�(r)B̃Λ�Λ(r) (10.167)

which is equivalent to:

Two-vector Volterra representation of the relativistic radial Lippmann-Schwinger
equations:

UΛ�Λ(r) = JΛ�(r)

�
δΛΛ� + ik

�
W +mc

2
�

c2�2

ˆ r

0
dr

�
r
�2
HΛ(r

�
)

�

Λ��

VΛ�Λ��(r
�
)UΛ��Λ(r

�
)

�

−HΛ�(r)

�
ik

�
W +mc

2
�

c2�2

ˆ r

0
dr

�
r
�2
JΛ(r

�
)

�

Λ��

VΛ�Λ��(r
�
)UΛ��Λ(r

�
)

�
(10.168)
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Implementation and Applications
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The main challenge when solving the single-site Dirac equation is to solve
the coupled radial Lippmann-Schwinger equations, in the method chosen
here written in an integral from. Using Chebyshev quadrature formulae, the
integral equations can be rewritten into linear equation systems that can be
solved by matrix inversion.
Apart from the radial integration, there are also several integrations of
the angular variables r̂ = (φ,θ ), namely for the D coefficients and the ν

coefficients, that are solved using the method by Lebedev and Laikov.

11.1 Chebyshev Quadrature

To solve the Lippmann-Schwinger integral equations for the Schrödinger equation,
Gonzales et al. [82] proposed a method using Chebyshev polynomials (a good
introduction can be found in [83], for details about the Chebyshev method see e.g.
[84, 85, 86]). As the Lippmann-Schwinger equations derived here for the Dirac case
have the same form, the same technique can be applied to solve them. The first
component of the method is Chebyshev quadrature, which is based on a simple idea:
a sufficiently smooth function is interpolated by a polynomial which is then integrated.
Because the integral of a polynomial is known, the integration is easy and boils down
to a recursion relation.

The intuitive try for interpolating a function might be to choose equidistant points
within the integration interval. This, however, leads to large deviations between the
interpolating polynomial and the interpolated function close to the boundaries of the
interval in consideration. This problem is known as Runge’s phenomenon (see [87])
and it can be overcome by using a different point set. The points that minimise the
maximal error on the interval [a, b] are given by

xn =
a+ b

2
+

b− a

2
cos

�
π
2n− 1

2N

�
, n = 1...N − 1 (11.1)

when using polynomials up to degree N . If [a, b] = [−1, 1] these points are the zeroes
of the Chebyshev polynomials Tn, which are defined by

Tn(x) := cos(n arccos(x)), n ∈ N. (11.2)

Although it is not obvious at first sight these functions are indeed polynomials. The
first three are given by

T0(x) = 1

T1(x) = x (11.3)
T2(x) = 2x

2
− 1.
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When using the Chebyshev nodes, it is convenient to express the interpolating
polynomial in a basis of Chebyshev polynomials. In order to derive a recursion
relation for the differentiation of the polynomials one can use the trigonometric
representation given above and differentiate it, yielding

2Tn(x) =
1

n+ 1

d

dx
Tn+1(x)−

1

n− 1

d

dx
Tn−1(x) forn ≥ 2. (11.4)

Here, however, a recursion relation for the integration is needed. Integration the
whole equation yields
ˆ

r

−1

Tn(x)dx =
1

2 (n+ 1)
Tn+1(x)

���
r

x=−1

−
1

2 (n− 1)
Tn−1(x)

���
r

x=−1

=
1

2 (n+ 1)

�
Tn+1(r)− (−1)

n+1
�
−

1

2 (n− 1)

�
Tn−1(r)− (−1)

n−1
�

=
1

2 (n+ 1)
Tn+1(r)−

1

2 (n− 1)
Tn−1(r) +

(−1)
n+1

n2 − 1
forn ≥ 2. (11.5)

To complete the recursion relation we need the case of n = 0 and n = 1, which can
easily be calculated directly:

ˆ
r

−1

T0(x)dx = T1(r) + 1 (11.6)
ˆ

r

−1

T1(x)dx =
1

4
T2(r)−

1

4
. (11.7)

Hence, we have an integration formula for a single Chebyshev polynomial. Now let us
look at an arbitrary polynomial of degree N (the interpolating polynomial) expressed
in a basis of Chebyshev polynomials:

p(x) =

N�

n=0

anTn(x). (11.8)

The integral of p will be a polynomial P of degree N + 1 which, for the definite
integral, can be written as

P (r) :=

ˆ
r

−1

p(x)dx =

N+1�

n=0

bnTn(r). (11.9)
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Let us directly look at the definite integral and evaluate the expression:

ˆ
r

−1

p(x)dx =

N�

n=0

an

ˆ
r

−1

Tn(x)dx

= a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r))

+

N�

n=2

an

�
1

2 (n+ 1)
Tn+1(r)−

1

2 (n− 1)
Tn−1(r) +

(−1)
n+1

n2 − 1

�

= a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r))

+

N+1�

n=3

an−1

2n
Tn(r)−

N−1�

n=1

an+1

2n
Tn(r) +

N�

n=2

an(−1)
n+1

n2 − 1
, (11.10)

where in the second step eqs. (11.5) - (11.7) where used. In order to maintain the
basis we make the approximation of leaving out the (N + 1)th term in the first sum.
The equation can then be rewritten as

ˆ
r

−1

p(x)dx = a0 (T1(r) + T0(r)) +
a1

4
(T2(r)− T0(r)) +

aN−1

2N
TN (r)−

a2

2
T1(r)

−
a3

4
T2(r) +

N−1�

n=3

an−1 − an+1

2n
Tn(r) +

N�

n=2

an(−1)
n+1

n2 − 1
. (11.11)

Rearranging and remembering that T0(r) = 1 yields

ˆ
r

−1

p(x)dx =

�
a0 −

a1

4
+

N�

n=2

an(−1)
n+1

n2 − 1

�
T0(r) +

�
a0 −

a2

2

�
T1(r)

+

N−1�

n=2

an−1 − an+1

2n
Tn(r) +

aN−1

2N
TN (r) (11.12)

Let us now define the coefficient vectors

p :=





a0

a1

...
aN




, P :=





b0

b1

...
bN




(11.13)

that contain the coefficients of the Chebyshev representation of the polynomials p
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and P . Again the term bN+1 has been omitted. From eq. (11.12) it can be seen that

P :=





a0 −
a1
4
+

�
N

n=2

an(−1)n+1

n2−1

a0 −
a2
2

a1−a3
4

a2−a4
6

...
aj−1−aj+1

2j

...
aN−1

2N





. (11.14)

Now one can write in a matrix form:

M · p = P , (11.15)

which is explicitly written:




1 − 1
4 − 1

3 + 1
8 − 1

15 · · · (−1)j+1

j2−1
· · · (−1)N+1

N2−1
1 0 − 1

2
1
4 0 − 1

4
0

0

. . .
1
2j 0 − 1

2j

. . .
1

2(N−1)
0 − 1

2(N−1)
1

2N 0









a0
a1
a2

.

.

.
aj

.

.

.

aN





=





b0
b1
b2

.

.

.
bj
.
.
.

bN





.

(11.16)

Note that this is an (N + 1)× (N + 1) matrix and j runs from 0 to N .
The matrix differs slightly from the one calculated by Gonzales et al. [82], namely in
the (N + 1)th entry of the first line. This matrix includes a term that is neglected in
the matrix by Gonzales. As a test, one can apply the integration onto the polynomials
x
j . For j < N both methods are numerically exact. For j = N and j = (N + 1) I

got results that were better by one order of magnitude for my example calculation
(N = 5).

So far the method describes how to transform an integral to a matrix vector multi-
plication. In the case of the Lippmann-Schwinger equations, however, on has to solve
an integral equation. In the scheme above that means that the coefficient vector p

consists of unknown values that need to be determined. In order to do so, the matrix
M is inverted and the product M

−1
P is evaluated. In other words, the integral

equation is rewritten into a linear equation system that is solved by matrix inversion.

11.2 Chebyshev Expansion

The Chebyshev polynomials fulfil the following orthogonality relation:
ˆ

1

−1

Tm(x)Tn(x)
�
1− x

2
�− 1

2 dx =

�
π

2
δmn ifm �= 0 or n �= 0

π ifm = n = 0.
(11.17)
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Therefore a function f that is defined on the interval [−1, 1] can be expanded in
terms of Chebyshev polynomials as

f(x) =

∞�

n=0

anTn(x) (11.18)

where

an =

�
1

π

´
1

−1
f(x)

�
1− x

2
�− 1

2 dx if n = 0

2

π

´
1

−1
f(x)Tn(x)

�
1− x

2
�− 1

2 dx if n ≥ 1.

(11.19)

Apart from the continuous orthogonality relation, the Chebyshev polynomials also
fulfil a discrete orthogonality relation:

N�

j=0

Tn(xj)Tm(xj) =

�
N

2
δmn ifm �= 0 or n �= 0

N ifm = n = 0,
(11.20)

where xj are the Chebyshev nodes

xj = cos

�
π
2n− 1

2N

�
, j = 0...N − 1, (11.21)

which are the special case of eq. (11.1) on the interval [−1, 1]. Inserting the function
f into the orthogonality relation yields an approximative formula for the coefficients
an:

an ≈

�
1

N

�
N−1

j=0
f(xj)Tn(xj) if n = 0

2

N

�
N−1

j=0
f(xj)Tn(xj) if n ≥ 1.

(11.22)

As this discrete formula is a sum instead of an integral, it is more useful for practical
implementation of the Chebyshev method.

11.3 Lebedev-Laikov Quadrature

The Chebyshev method of the previous section can be applied to one-dimensional
integrals, i.e. in the context of this thesis for the radial integration. For the angular
momentum expansion of the potential, specifically for integrations when calculating
the νΛΛ� coefficients, equations (10.92) to (10.95), and the D coefficients, eq. (10.121),
a quadrature method for integrations on a sphere is needed. The method used here
was developed by Lebedev and Laikov [88, 89, 90, 91] and is a standard method
for integrations on a sphere. A good introduction to the method can be found in [92].

The essence is to rewrite the integral to a summation
ˆ

dr̂f(r̂) =
ˆ

π

0

dθ

ˆ
2π

0

dφf(θ,φ ) ≈

�

i

wif(θi, φi) (11.23)
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with adequately chosen points (θi, φi) on the sphere and corresponding weights. The
points are chosen such that they are invariant under the octahedral rotational group
with inversion. To construct the points one has to start from one representative of a
certain class of points and then construct the invariant points. The smallest number
of points that can theoretically be used is six, corresponding to six vertices of an
octahedron24. The weights are determined by demanding that the method is exact
for integrating polynomials up to a given order.

Laikov provided a publicly available C code that generates integration points and
corresponding weights. I used the original code to generate these values for my
integration routine. As a test calculation I evaluated the orthonormality relation of
spherical harmonics in the range of l = 0 up to l = 6. With 110 points I already
obtained machine precision.

24The series of possible numbers of points is 6, 14, 26, 38, 50, 74, 86, 110, 146, 170, 194, 230, 266,
302, 350, 434, 590, 770, 974, . . ..



12 Dirac Single-Site Solver

The algorithm of the Dirac single-site solver that I implemented is explained
here. As an application, the skew scattering of tungsten in rubidium is
calculated, showing the expected asymmetry that is an extrinsic contribution
to the anomalous Hall effect.

12.1 Algorithm

The algorithm for solving the single site problem has been implemented in Fortran 90.
The most important steps up to the radial parts of the wave functions are described
here in a diagrammatic scheme. For details of the steps refer to the respective
equations given and the sections in which they appear. Expressions in monospace
style refer to the corresponding Fortran files and subroutines.

__________________________

Calculate and Expand the Potential (Potential.f90)

read the D coefficients from a file (readDcoeff)

for each r calculate ϕ(r, φ,θ ) and B(r, φ,θ ) (getPotPhi, getPotB)
calculate the potential matrix V (r)

for each Λ calculate the νΛ(r), ν̃Λ(r) coefficients eqs.
(10.92-10.95) performing integrationson a
sphere (nuCoefficients)

for each tuple ΛΛ
� calculate the vΛΛ�(r) coefficients by summing

up the respective νΛ(r) coefficients eqs.
(10.96-10.99) (ExpansionCoefficients)

calculate the sums for the wΛΛ�(r) coefficients
eq. (10.122) (wPotentialExpansion)

Prepare the Source Terms (SourceTerms.f90)

for each r calculate a vector containing Bessel and Hankel
functions J(r), H(r) for all Λ values, eqs.
(10.150-10.153)

Set up and Solve the Linear Equation System (calctmat.f90, rllsll.f90)
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write the equation as a huge matrix-vector multiplication with indices for the radial
points ri and the Λ value

multiply by the Chebyshev matrix to set up the linear equation system

invert the matrix

��� radial wave functions RΛΛ�(r), SΛΛ�(r)

__________________________

My code is written such that it is embedded into the KKR code that is recently under
development in our institute (D. Bauer, R. Zeller, P. Mavropoulos).

The calculation for a given kinetic energy E starts by computing the magnetic field
B and the scalar potential ϕ from the spin up V

↑ and spin down potential V ↓ in
angular momentum representation, that is provided by the embedding KKR code.
Once B and ϕ are known (in real space representation), the 4× 4 potential matrix
is set up and expanded into spin spherical harmonics. This expansion is done by
making use of the νΛΛ� coefficients. From these coefficients, the wΛΛ� coefficients are
calculated25.

After the potential expansion has been computed, a second ingredient for setting up
the Lippmann-Schwinger equations is to calculate the source terms, which contain
Bessel and Hankel functions and spin spherical harmonics. Once they are calculated,
the Lippmann-Schwinger equations are solved by the Chebyshev matrix. To obtain
higher numerical accuracy without high computational effort, the integration domain
is split into sub-intervals, resulting in smaller matrices. The solutions for the sub-
intervals are matched by an analytically exact condition. The result is a large matrix,
describing the system of linear equations which are equivalent to the Lippmann-
Schwinger equations. The equation system is solved by matrix inversion, yielding the
radial wave functions.

The two most time consuming steps in the algorithm are the calculation of the sum
for the wΛΛ� coefficients in eq. (10.122) and the matrix inversion. The former is a sum
that has to be computed for Λ2 coefficients, while for each of them Λ

2 summands have
to be added, resulting in Λ

4 operations26. The current speed of the code is around
four times slower compared to scalar relativistic calculations with spin-orbit coupling.
While the matrix inversion is inevitable, the sum for the wΛΛ� coefficients holds
potential for future efficiency enhancement by examining the analytical properties
of the DΛΛ�Λ2Λ3 coefficients, which are the relativistic counterparts of the Gaunt

25For the case of spherical potentials with zero magnetic field B there is a faster routine, making
use of analytical properties discussed in section 10.8, that calculates the wΛΛ� coefficients directly.
This routine is used if the parameter spherical_only in DiracConfig.f90 is set to 1, otherwise
the full-potential method is used.

26 For example, if lcut = 3 and hence Λcut = 32, this means that around 1 million operations have
to be performed.
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coefficients. As many of them are zero, the number of operations in the sum for each
coefficient can be reduced if these properties are exploited.

Once the wave functions are known, they are transformed from the (κ, µ) basis to the
(l,ml,ms) basis, so that they can be used within the currently existing embedding
code without modifications. In the course of the wave function calculations, the
(angular momentum dependent) t matrix is also calculated, as it is needed for the
calculation of the Green function of the full system. The described procedure is
done for many energies, afterwards the Green function can be calculated from an
energy integration. The matrix T

msm
�
s

kk� is not part of this calculation, however, I wrote
an add-on (in Python language) that calculates this matrix, in order to examine
scattering in detail. Results are presented in the following section.
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12.2 Skew Scattering at a Tungsten Impurity

If an electron is scattered at an (impurity) atom the interaction of the electron
wave with the spin-orbit coupling of the impurity produces a direction dependent
scattering, i.e. electrons have a higher probability of being scattered into a certain
direction depending on whether they are in a spin up or spin down state. This effect
has first been described by Mott [93], who also examined the consequences for
the conductivity in metals [94, 95]. It is one of the extrinsic contributions to the
anomalous Hall effect [96], and in this context the term skew scattering is commonly
used. The contribution to the spin Hall effect has recently been examined by Fert
and Levy [97].

Figure 12.1: Scattering at a tungsten im-

purity in a rubidium host in a non-magnetic

calculation with a spherically approximated

potential. Depicted is the squared absolute

value of the matrix T
msm

�
s

kk� where the absolute

values of k and k
�
are equal (elastic scattering)

and correspond to the Fermi energy. This fig-

ure shows the non-spinflip scattering, here for

ms = m
�
s = +

1
2 with the spin in z-direction.

The incoming wave has a wave vector in the

direction of the x-axis k = kF êx. In spherical

coordinates this corresponds to angles φ = 0

and θ = π/2. The shown curve is the φ
�
-

dependence for a fixed value of θ
�
=

3
2π.

The absolute squared value of the matrix
T
msm

�
s

kk� defined in eq. (10.67) is propor-
tional to the probability of a particle
being scattered in a certain direction. I
calculated this matrix, based on a calcu-
lation of a tungsten impurity in a rubid-
ium host. The corresponding potential
was calculated self-consistently within
the local density approximation by the
KKR method. Since rubidium is to a
very good approximation a free-electron
host, we can examine the Mott scattering
in the free-electron approximation. Due
to the cubic structure of rubidium, the
tungsten potential has in reality small
non-spherical components, that are neg-
lected in the non-magnetic calculation
and included in the magnetic calcula-
tion. In this calculation the incoming
spin is oriented in z-direction, while the
incoming wave has a wave vector k in
the x-direction. In spherical coordinates
this is equivalent to k having the angular
part (θ,φ ) = (

π

2
, 0). The calculation was

performed at the Fermi energy, hence the
length of the wave vector is determined
by �2k2

F
/2m = EF .

Fig. 12.2 shows the result of the calculation. Depicted is
��Tmsm

�
s

kk�

��2 in terms of (θ�, φ�
),

which are the angular coordinates of k. The results shown are the part without
spin-flip, i.e. ms� = ms. I computed this first in a non-magnetic calculation using
only the spherical part of the potential (fig. 12.2a) and then in a magnetic calculation
with full-potential (fig. 12.2b). The difference between a magnetic and non-magnetic
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calculation here is the dominating part of the difference.

The theoretically expected asymmetry between scattering to the left and to the right
(in x-direction), corresponding to an asymmetry dependent on φ

�, can be observed in
both calculations. It is more drastic in the magnetic full-potential case. For a more
quantitative picture, in fig. 12.1 the φ

�-dependent asymmetry is shown for a fixed θ

value.
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(a) Non-magnetic calculation with the spherically approximated potential.

(b) Magnetic calculation with the full potential.

Figure 12.2: Scattering at a tungsten impurity in a rubidium host. Depicted is the squared

absolute value of the matrix T
msm

�
s

kk� where the absolute values of k and k
�
are equal (elastic

scattering) and correspond to the Fermi energy. This figure shows the non-spinflip scattering,

here for ms = m
�
s = +

1
2 with the spin in z-direction. The incoming wave has a wave vector

in the direction of the x-axis k = kF êx. In spherical coordinates this corresponds to angles

φ = 0 and θ = π/2. The left plots show the angles of the wave vector k
�
of the scattered

wave in spherical coordinates. In the right picture the same quantity is depicted, here by the

distance from the origin.



13 Conclusion

Within this work it was my aim to present a comprehensive discussion of the full-
potential electron scattering problem based on the Dirac equation. In the first
part I set this work into the context of electronic structure calculations with the
KKR method and DFT methods in general. The second part described the non-
relativistic case, forming an important step in understanding the relativistic case
later on. Additionally, the Green function in the relativistic case is based on the one
of the non-relativistic case.

In the third part I addressed the main objective of this thesis. Starting point is
the Dirac equation, which contains vectorial wave functions with four entries and
a 4 × 4 potential matrix. This matrix has the important property that it is not
only hermitian, but also consists of four sub-matrices, which themselves are again
hermitian. Exploiting this property, I was able to expand the potential in spin
spherical harmonics, such that the expansion coefficients form a 2× 2 matrix. This
fact is important, because based on this expansion I developed an expansion of the
relativistic Lippmann-Schwinger equations with radial wave functions having only two
and not four entries. Hence, the resulting matrix for the system of linear equations
that has to be solved, in my method has only twice the dimensions (four times as
many entries) as the matrix in the non-relativistic case, and not four times as many.
The dimensions are the same as for scalar relativistic calculations with spin-orbit
coupling, only the sum for the wΛΛ� coefficients consumes additional computational
time.

In the derivation of the potential expansion I considered both cases, the one of a
B field representation and the one of using the full vector field A. Hence I showed
the theoretical framework of solving the single-site problem in a spin-current KKR
method and discussed that the additional complicacy for the single-site problem is
managable. In order to be compatible with the code, however, the implemented
version is based on the B field representation (spin-polarised KKR).

Since the Lippmann-Schwinger equations I derived have the same structure as the
ones in the non-relativistic case, the Chebyshev integration method, already applied
by Gonzales et al. to the Schrödinger equation, can be applied to the Dirac equation
without major modifications in the integration methods. Hence the advantages of
this method – immensely improved numerical accuracy at only modest increase in
computational time and numerical stability, become accessible for fully-relativistic
full-potential calculations.

I successfully implemented the method as part of the KKR code currently developed
in Jülich. As a test, I compared some calculated wave functions to the ones calculated
by the scalar-relativistic solver and, after artificially setting the vacuum speed of light
in my programme to a much higher value (simulating the non-relativistic limit), to
the non-relativistic solver, both with good agreement.

I applied the method to a tungsten impurity in a rubidium host. In this system
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tungsten is magnetic and furthermore, due to its high atomic number, tungsten shows
strong spin-orbit coupling and, in general, strong relativistic effects. One of them is
the splitting of the d orbitals which I could observe when calculating the phase shifts.
Another property I examined was the scattering of electrons at this tungsten impurity
(Mott scattering or skew scattering). Here a non-symmetric scattering behaviour can
be observed, which forms one of the extrinsic contributions to the anomalous Hall
effect.

To conclude it can be said that, based on a successful derivation of relativistic
Lippmann-Schwinger equations, I was able to develop an efficient algorithm to
determine the wave functions and the Green functions in fully-relativistic full-potential
electron scattering. The calculations performed are able to simulate interesting
quantum mechanical effects and are good accordance with expectations.
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