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In order to interpret measured intensity autocorrelation functions obtained in
evanescent wave scattering, their initial decay rates have been analyzed recently
[Phys. Rev. E 74, 021402 (2006), J. Chem. Phys. 132, 074704 (2010), J. Chem.
Phys 135, 014701 (2011)]. A theoretical analysis of the longer time dependence of
evanescent wave autocorrelation functions, beyond the initial decay, is still lacking.
In this paper we present such an analysis for very dilute suspensions of spherical
colloids. We present simulation results, a comparison to cumulant expansions, and
experiments. An efficient simulation method is developed which takes advantage
of the particular mathematical structure of the time-evolution equation of the
probability density function of the position coordinate of the colloidal sphere.
The computer simulation results are compared with analytic, first and second
order cumulant expansions. The only available analytical result for the full time
dependence of evanescent wave autocorrelation functions [Phys. Rev. Lett. 57,
17 (1986)], that neglects hydrodynamic interactions between the colloidal spheres
and the wall, is shown to be quite inaccurate. Experimental results are presented

and compared to the simulations and cumulant expansions.
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I. INTRODUCTION

The dynamics and microstructural ordering of macromolecules near interfaces is a
fundamental scientific theme that has drawn much attention the last few years, and is
of importance in many industrial and technological applications. Examples are coating
processes or any process where particles are deposited onto surfaces!, membrane filtering,
or any other process where dispersed particles migrate in porous media? and more recently
micro-2 and optofluidics?. Interfacial effects also play an important role in biological
processes, like protein adsorption?, biofilm formation® or the collective motion of sperm

cells near planar surfaces’.

In order to improve our understanding of these very complex processes, we have, as a
first step, to develop techniques which allow us to study the underlying physics in detail on
model systems. In the present contribution we are focusing on evanescent wave dynamic
light scattering (EWDLS)®? as a method to study the near wall dynamics of colloidal
spheres. In EWDLS-experiments a laser beam is totally reflected off the interface between
a glass wall and the sample solution, thereby creating an evanescent wave, which is used
to illuminate a region close to the wall. The extent of the near-wall scattering volume is
determined by the evanescent-wave penetration depth. By changing the incident angle
of the laser beam with respect to the interface, the penetration depth can be tuned, so
that a system can be probed on different length scales. Like for standard bulk dynamic
light scattering, the scattered light intensity autocorrelation function (IACF) is measured.
In case of suspensions of colloids in contact with a wall, the near-wall dynamics of the
colloids is to a large extent determined by hydrodynamic interactions with the wall which
are mediated via the solvent. The hydrodynamic friction forces differ for motion of a

110°12 " This anisotropy in the hydrodynamic

colloid along and perpendicular to the wal
interactions with the wall in combination with the evanescent illumination profile renders
the interpretation of EWDLS experiments much more involved as compared to bulk
scattering experiments. As a first step towards the interpretation of EWDLS correlation
functions, Lan, Ostrowsky and Sornette? derived an analytic expression for the EWDLS
correlation function for spherical colloids and a hard wall, at very low concentrations of
colloids, with the neglect of hydrodynamic interactions. The deviation of this expression
from that for the bulk correlation function within their approximation is thus entirely

due to direct interactions. Hydrodynamic interactions, however, have a pronounced effect

on the form of the correlation function, and must therefore be accounted for. It seems



not feasible to derive a similar analytic expression for the EWDLS correlation function
when hydrodynamic interactions of the colloidal sphere with the wall are included. It is
possible, though, to derive explicit expressions for the first cumulant, that is, the initial
slope of the time-dependence of the EWDLS correlation function, which expressions have
been verified experimentally334. A general expression for the first cumulant for arbitrary
concentrations of colloids can be derived, which has been evaluated explicitly to within a
leading order virial expansion, and by simulations for higher concentrations in an attempt

to interpret earlier experimental results at equally high concentrationst®27.

The first and second cumulant can be expressed in terms of the hydrodynamic mobil-
ities of a colloidal particle, where a distinction must be made for motion perpendicular
and parallel to the wall. The problem of determining friction and mobility coefficients of
a spherical particle near an interface has a history dating back to works of Lorentz!® and
Faxén'?. In the 1960’s, solutions of the Stokes equation, either numerical, or in bipolar
coordinates, have been given for certain types of motion by O’Neill and coworkers® 22,
who also investigated the lubrication regime of the solution, and by Brenner et all%12,
In such a confined system the translational components of the mobility matrix p tend to
zero when approaching the wall. This effect dominates in the dynamics of the system.
These predictions are verified in a number of experimental studies, using particles of dif-
ferent sizes, and employing various techniques: optical trap microscopy??, nano-PIV24:25,

dynamic light scattering in presence of two walls?®, low coherence DLS??, resonance en-

hanced DLS22 and EWDLS in a system bounded by one or two walls®13:14:30-32

In this work, we will need the values of the mobility matrix elements for a single
sphere as a function of the particle-wall distance. To this end, Padé approximant repre-
sentation will be used, as outlined by Cichocki and Jones?* and earlier works of Perkins
and Jones®>3¢. This is a very convenient tool, since it allows for analytic differentiation
of the hydrodynamic mobilities in the whole range of distances from the wall with high

precision.

The initial temporal decay of EWDLS correlation functions for colloids near a wall
with hard-core interactions, as quantified by the first cumulant, has thus been addressed
in some detail (although some issues remain to be resolved). Nothing has been done so
far concerning the full time dependence of correlation functions, beyond the time regime
that is described by the first cumulant expansion. In this paper we take the first step

toward an understanding of the full time dependence of EWDLS correlation functions,



where very dilute dispersions of spherical colloids are considered. Numerical simulation
results are compared to analytical first- and second cumulant approximations, and to
experiments.

This paper is organized as follows. In section [[Il we present the general theoretical
framework on which the analytical cumulant expansion as well as the simulations are
based. In section [[ITl the cumulant expansion is discussed, and explicit expressions for the
first two cumulants are derived. Numerical results for the various contributions for varying
penetrations depths are given in the form of a table to enable easy and accurate evaluation
of first and second cumulants. The new simulation method is presented in section [VI
and section [V] contains a comparison of experimental results with the predictions from

simulations and the cumulant expansions.

II. ONE-PARTICLE ELECTRIC FIELD CORRELATION FUNCTION

In an EWDLS experiment the illumination profile is nonuniform. The evanescent
wave enters the suspension (at the location of the wall), and its intensity varies with the
perpendicular distance z from the wall as exp(—kz). Typically, the penetration depth x~*
is comparable to the size of colloidal particles. Given an ensemble of spherical colloids in

the configuration {R;}, the instantaneous scattered electric field can be written as
R .
E ~ Zexp (_EZ]) exp(iq - R;), (1)
J

where q is the scattering vector. We assume that there are sufficiently many colloidal
particles within the volume that is illuminated by the evanescent wave and from which
scattered intensities are collected, that the scattered electric field is a Gaussian stochastic
process with mean zero, thus fulfilling the assumptions of Wick’s theorem. This allows

to express the measured intensity correlation function
g1(t) = (@)1t = 0)) = (E(H)E" (1) E(t = 0)E"(t = 0)), (2)

as a combination of averaged bilinear products of the scattered field strength. As the
system is translationally invariant in the direction parallel to the wall, the average
(E(t)E(t = 0)) equals 0. The resulting expression for the intensity correlation func-
tion in terms of the electric field correlation function is known as the Siegert relation,

which reads

gr(t) = *(q) [1+19(1)]*] , (3)
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where 1(q) is the average light intensity value, which is time-independent, as the stochas-
tic process E(q, k;t) is stationary. Furthermore, the normalized electric field autocorre-
lation function (EACF) is defined as

(E(q,r;t)E*(q, K;0))
I(q) '

where (---) denotes equilibrium ensemble averaging. From this definition, the initial

value of the EACF is

(4)

g(g, Kk t) =

9(q, k5t =0) = 1. (5)
According to eq.(I), the correlation function g(q, x;t), for the general N-particle case,

is proportional to

For k = 0, corresponding to an unbounded fluid, the thermodynamic limit lim., of the
right-hand side of the above expression is well-defined. However, for nonzero x, the
problem is more subtle and has been properly treated in Ref. . As it has been shown
there, one should then consider a cubic box of volume V = L, L, L., touching the wall
with its side with surface area A = L,L,. In the thermodynamic limit all dimensions
of the box are simultaneously stretched, keeping the density of particles n constant. To
assure existence of the right-hand side of eq. (@), a factor /A must be added.

In a dilute system the description reduces to a one-particle problem and we can neglect
the terms with ¢ # j in the sum above. Restricting to one-particle contributions to ¢ and
expressing the average using the conditional probability P(R, /Ry, 0) of a particle being

in position R at time ¢, given its position Ry at ¢ = 0, we have, in thermodynamic limit

g(q. 1) oc lim % / dR / dRy e 2 GH0)emieR-Ro)p (R)P(R,t|Ry,0). (7)

The equilibrium distribution P.,(R) ~ exp(—f®(z)) is determined by the interaction
potential ®(z), depending only on the wall-particle distance z, and 8 = 1/kgT', where T'
is the temperature and kg is the Boltzmann constant.

Because of translational invariance in the xy-plane, in thermodynamic limit the con-
ditional probability P(R.,t|Rg,0) will be denoted by P(p, z, z9,t). The probability can
only depend on the z-positions, the distance perpendicular to the wall, and the length of
the horizontal displacement vector p = |p|, defined by the relation

R_RO :p+(2_20>éza (8)
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Figure 1. Geometry of the system. The conditional probability density depends on the distance

from the wall and length of the parallel displacement vector p.

and marked in Fig. I We similarly decompose g into components parallel and perpen-

dicular to the wall

qg=qié.+gq. (9)
Next, we introduce new variables (R + Ry)/2 and R — Ry in eq.(d), and integrate over
(x + xo)/2 and (y + yo)/2. This leads to a factor A.

Since the normalization factor in P,,(R) is of the order of V, after performing the

thermodynamic limit, us the right-hand side of eq.([) becomes

/dz/dzo e 2 (#H70) gmid1 (z=20) p—(20) /dp e "IPP(p, z, 20, 1). (10)

Here, the lower integration limit is the radius a of the spherical colloid, which corresponds
to the closest approach of the sphere to the wall. Using that the initial value of the
conditional probability distribution P(R,t = 0|R,0) = 6(R — Ry), we find the initial
value of ([I0) as

[e.e]

/dz e e PP, (11)

a

Using the normalization condition (), we express the EACF as

/dz/dzo 6*%(2+z0)efij_(zfzo)ef/ﬁ@(zo)ﬁ(ql" Z, ZO) t)
9(q, k;t) = —— = : (12)

/dZ e—mze—ﬁfb(z)

a
where we introduced a two dimensional Fourier transform of the probability density

function

P(qy, 2, 20,1) = /dp e " UPP(p, z, 2, 1). (13)



This expression will be used as a basis for the Brownian dynamics simulation in order
to obtain numerical values for the EWDLS correlation function. Note that in case of a
hard-core interaction potential (® = 0 when there is no overlap and ® = oo otherwise),
the denominator in (I2)) reduces to exp(—ra)/k where a is the radius of the colloidal

sphere, yielding
g(g,5;t) = K exp(ra) /dZ/dZO e 2 (F0)e T Gm0) e ~I Pgy 2 2 1) (14)

In order to explicitly evaluate the EACF in eq.(I4]), the time dependence of the (par-
tially Fourier transformed) conditional probability density function (pdf) ﬁ(qu,z, 20, 1)
must be specified. For this purpose we will return to eq. (), in which the conditional
probability distribution P(R,t|Ry,0) satisfies the Smoluchowski equation for a single
colloidal sphere in presence of a wall

OP(R,t|Ry,0)
ot

— DP(R, Ry, 0). (15)

Taking an arbitrary phase-space function h(R) and again denoting the potential of in-
teractions with the wall by ®, the Smoluchowski operator D is given by

Dh(R) = % D(z) - {a% + ﬁg%] h(R). (16)

The diffusion matrix D(z) is connected with the mobility matrix via the relation
D(z) = kgTp(z). (17)

The mobility matrix p, which relates the force acting on a spherical particle to its velocity,
has the following structure in the considered frame of reference (z-axis perpendicular to

the wall, pointing into the fluid)

where the elements y , depend only on the wall-particle distance z.

As already discussed in the introduction, the z-dependencies of the scalar mobilities
are well-knowni®:-20 For large distances from the wall (2 — 00), the mobility functions
), (2) tend to the bulk mobility coefficient jio, which is related to the bulk diffusion
coefficient Dy = kpT'pp. In the limit of infinite penetration depth (k — 0), there are
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no effects of interaction with the wall and the expression (I4]) reduces to the standard
exponential expression g(q, x;t) = exp{—Dyq*t} for free diffusion.

In section [V] we discuss how the Smoluchowski equation, in combination with ex-
pression (4], will be used in a simulation scheme to obtain numerical results for the
correlation function. These results will be compared to a cumulant expansion, which is

discussed in the subsequent section.

IIT. CUMULANT EXPANSION OF THE EACF
Using the formal solution of the Smoluchowski equation (IH)
P(R,t|Ry,0) = e?'P(Ry) = eP'§(R — Ry), (19)

the EACF can be expanded in powers of the time evolution operator D, which leads to

the cumulant expansion. Inserting eq.(I9) into the expression for the EACF leads to

g(q, k;t) /dR/dRO e~ 3(+20) gm0 (R-Ro) oy n FDILG(R — Ry)e P20, (20)

It is convenient to introduce the adjoint Smoluchowski operator defined by the scalar
product
/ dR f(R)Dh(R) = / dRA(R)D'f(R), (21)

z>a z>a
where f and h are arbitrary phase-space functions. From eq.(Ifl), the adjoint operator is
found after partial integrations, using that the hydrodynamic mobility functions vanish
on contact with the wall, and reads

0

= h(R) (22)

e

Since D' does not act on the variable Ry, we can perform the integration over Rq in

eq.(20), due to the presence of the Dirac delta distribution, to obtain
g(q, k;t) x /dR e PPE IR =r2/2 oy (DT} e~ ReR2/2, (23)

Expanding the exponential for small times, the EACF can be written as

. t2
g(q,k;t) = 14t + MQT + o(t?), (24)



where two first moments are equal to

eyt
(¢"D'y)
H1 = “rz\ (25)
{e7r)
* T T
(¢"D'Dy)
M2 = . ) (26)
{e7r)
with ¢ = e7"#R®e=#2/2 Re-exponentiation of eq.(24)) thus leads to
1
g(q, k;t) = exp (—Flt + §F2t2 + 0(t2)) : (27)

where the first and second cumulants I'; and I'y are related to the moments in eq.(20) as

Iy = —m, (28)
Ty = 1o — pif. (29)
the first moment takes the form
7 2
/dz exp{—kz}exp{—FP(z)} {D(z)q2 + D, (2) (qi + %)]
pp=T=% = , (30)

/dz exp{—krz}exp{—[P(2)}

a
Introducing the penetration-depth averaged diffusion coefficients for dilute suspension,

defined for an arbitrary z-dependent function by

}Odz exp{—rz}exp{—pP(z)}B(z)
(B)s = = : (31)
[dz exp{—rz}exp{—5P(2)}

in correspondence with the averages defined for arbitrary concentrations in Ref. E, we

may conveniently write the first cumulant as

t=at (D), + (¢ + 77 ) (Do), (32

The second moment, needed for calculation of the second cumulant, may be then

derived from eq. (20]) as
He =g (D), + (a1 + ) (D1),— 24| (— —h) (DyD1), (33)

dDL dd l'i2 dDL
2 o - o 2 v L
et (1 (G —pp)) () (0 (T -20)),

2 2
s K dD d®
— — —D, [f— .
+(qL+4> (dz Lﬂdz




This expression corrects the one given in an appendix in Ref. m, which contains an
erroneous sign in the fourth and fifth term on the right-hand side.

We will now restrict to hard-core interaction potential

D(2) = 0 z > a, (34)

00 z < a.

Evaluation of eq.(33]) for a hard-core potential ®(z) is subtle. The expression

DURFSE e = D)L () (35)

within the averages, reduces then to D, (a)d(z — a). With the neglect of hydrodynamic
interactions we have D, (z = a) # 0, and the last term on the right-hand side of eq.(33))
diverges, and therefore the second cumulant does not exist. The short-time expansion of
the exact solution in this (unphysical) case, which is discussed in the Appendix, shows
that the first term in the series is of order ¢, which guarantees the existence of the
first cumulant, while the next term is of order t*/2. Due to hydrodynamic interactions,
however, D(z) — 0 when z — a. This assures that the right-hand side of eq.(33]) exists
and has a finite hard-core limit.

In this case the derivation, as we show in the Appendix, leads to the second moment

in the form

Kk K2
pa = qj (D), + (‘ﬁ - E) (D1), — 24 (z - ﬁ) (DyD1), (36)
2 / 2 K 7 \2
+ rgj (DLDy), + (a1 + 7 <(DL) >H,
where the prime denotes a derivative with respect to z. In addition, the penetration-depth

average (see eq.(B1])) for the hard-core potential ([B4]) reduces to

(e 9]

(B),, = H/dz exp{—kr(z —a)}B(z). (37)

a
The Appendix contains also the proof that I'y, constructed using pq and us as in (29),
is nonnegative.

We calculated values of the coefficients appearing in both moments in Table[[lusing the
method given by Cichocki and Jones®*. In this method, Padé approximant representation
is used for the friction matrix, which relates velocity and angular velocity to the force and
torque acting on the sphere. By inversion of the friction matrix we obtain the mobility

matrix?’. Then, using eq. (), we calculate D (z) and Dj(z).
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For convenience, in the Table we rescaled the diffusion coefficients by the single particle
bulk diffusion coefficient Dy = kgT'/67na, introducing

D D
Di==5  Di=H

o = 38
& D=7 (39)

with the temperature 7" and 7 being the solvent viscosity. Once the experimental param-
eters k, q|, q1, are known, the table allows for a fast and straightforward calculation of

two approximations to the EACF () - by means of the first cumulant
g (t) = exp(~T11), (39)
and the second cumulant approximation
P (t) = exp(~Tit + i0xt?). (40)

For hard-core interactions, the cumulant expansion (24]) can be performed only up
to the third order for the following reason. The diffusion coefficients are non-analytical
at z = a, and their lubrication asymptotic behaviour can be expressed in terms of the
dimensionless gap width between the surface of the sphere and the wall ¢ = (2 — a)/a
as3?

D, ~e+ te’loge, (41)
Dy~ —2(loge) ™. (42)

The adjoint Smoluchowski operator D' contains two derivatives with respect to z, so that
consecutive terms in the cumulant expansion contain averages of higher order derivatives
of D, and D). Careful analysis of the integrals in these averages, taking into account
the nonanalytic behaviour of the diffusion coefficients in the proximity the wall, given
by 1)) and ([@2), leads to a conclusion that the third cumulant exists, while the fourth
cumulant and all higher ones do not exist.

It is worth noticing that when the penetration depth is small (which corresponds to
large values of xa), the penetration-depth averages of the diffusion coefficients in Table[ll
become small as well. The reason for such behaviour is that in this case only the particles
that are very close to the wall contribute to the average. Moreover, for those particles,

their diffusion coefficients decrease due to the hydrodynamic interactions with the wall

(see eqns. () and (@2)).
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Table I. Components of first and second cumulant of the EACF for hard-core interaction between

the wall and the particle. The values of the cumulants can be reproduced from eq. (32]) and (30])

by using the above averaged values of the diffusion coefficients. The prime denotes derivative

with respect to z, and the bar denotes the diffusion coefficients rescaled by the single-particle

bulk diffusion coefficient Dy, DJ_,II =D, /Do.

Ka First cumulant Second cumulant
(D)), (D1), (D}) (D%), (DyDi), a(D\Dy), — a*((DL)?),

0.1 0.884 0.781 0.796 0.652 0.715 0.053 0.029
0.2 0.831 0.682 0.708 0.516 0.597 0.088 0.055
0.3 0.791 0.612 0.647 0.429 0.517 0.115 0.079
0.4 0.761 0.559 0.600 0.367 0.459 0.137 0.101
0.5 0.736 0.516 0.563 0.321 0.414 0.155 0.121
0.6 0.715 0.481 0.533 0.284 0.377 0.171 0.141
0.7 0.697 0.451 0.507 0.254 0.347 0.184 0.159
0.8 0.681 0.425 0.485 0.230 0.322 0.195 0.176
0.9 0.667 0.403 0.466 0.209 0.300 0.206 0.192
1 0.654 0.383 0.449 0.191 0.281 0.214 0.208
1.1 0.643 0.365 0.434 0.176 0.264 0.222 0.222
1.2 0.632 0.349 0.420 0.163 0.249 0.230 0.236
1.3 0.622 0.335 0.408 0.151 0.236 0.236 0.249
1.4 0.614 0.322 0.396 0.141 0.224 0.242 0.262
1.5 0.605 0.310 0.386 0.131 0.213 0.247 0.274
1.7 0.591 0.288 0.368 0.116 0.194 0.256 0.297
1.9 0.578 0.270 0.352 0.103 0.179 0.264 0.318
2 0.572 0.262 0.345 0.097 0.172 0.268 0.328
5 0.473 0.140 0.236 0.031 0.078 0.311 0.518
7 0.442 0.108 0.206 0.019 0.056 0.317 0.587
9 0.420 0.088 0.186 0.013 0.043 0.319 0.636
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IV. SIMULATION PROCEDURE

A fast numerical scheme for the calculation of the EACF for all times relies on the
structure of the hydrodynamic mobility matrix pu. Because of translational invariance in
the xy-plane parallel to the wall, the structure of the probability distribution function
(pdf) in that plane is purely Gaussian, with a z-dependent diffusion coefficient Dj().
This leads to the idea that the pdf for the Brownian particle can be recovered by tracing
only the trajectory in the z-direction, where the diffusion coefficient is given by D, (z),
and account for the Gaussian evolution in the parallel plane in a different way. We start
from the Smoluchowski equation ([[3]), written in a more explicit form as

OP(p,z, 20,t) 0 OP(p, z, 2o, t) 0? 0?

Because of symmetry, the pdf P depends only on the initial and final vertical coordinates
z and zy, and displacement in the zy-plane parallel to the wall, represented by the vector
p (see Figll).

Performing the Fourier transformation in the xy-plane, and denoting the transformed

pdf by P= ﬁ(q”, 2, 20, 1), as in eq.(I3]), we obtain an equation of the form

%—f = % (DL(Z)g—S) —qDy(2)P. (44)

This can be regarded as a one-dimensional diffusion-reaction equation, or a diffusion
equation with a probability sink. The reduction from the three-dimensional Smoluchowski
equation to one dimension allows for significant acceleration of the simulation.

Putting eq.(@4) in the following form

P(QH) 27207t> = eﬁtﬁ(qﬂazazmt = 0)7 (45)

we can decompose the evolution operator £ into two distinct parts: the diffusion operator
Ly = 0.[D,(2)0.(+)], and the probability-sink operator Lo = —qﬁDH(z). To obtain
a suitable numerical scheme, we use the Trotter identity®® and treat each part in a
different way. The evolution according to £; can be obtained from a Brownian dynamics
numerical scheme. We generate trajectories of Brownian particles in the z-direction.
Obtained trajectories build the corresponding probability distribution and are then used
as an ensemble for calculating averages. Every Brownian dynamics step is followed by

application of £,. We account for this type of evolution by introducing a decay of ﬁ,
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according to

]5(q||, 2,20, t + At) = eEQAtﬁ(qH, z, 20, t) = P(qy, z, zo,t)efqﬁD“(z)At. (46)

The weight a particle contributes to the probability distribution is dependent on its
trajectory. For evaluation of the diffusion coeflicients Dy(z) and D, (z), we use the
results of Cichocki and Jones3?.

Results are presented in terms of dimensionless quantities, where lengths are scaled
to the particle radius a, while the timescale is set by the structural relaxation time
7p = a*/Dy, i.e. the time needed for the particle to diffuse over its own radius. For
comparison with experiments, Dy is calculated for given experimental conditions and the
hydrodynamic radius of the particles is determined from bulk measurements.

To generate the trajectories of Brownian particles, we employ the first-order Ermak-
McCammon scheme2?®, modified by the presence of the sink term. Particle positions in

the z-direction are updated in each time step according to

Z(t+ At) = z(t) + D' (2) At + /2D, (z)At n (47)

where n is a Gaussian random variable with zero mean and unit variance. Next, we
account for the probability-sink term, according to eq.(#6). This procedure is repeated in
every step of the simulation. The reduction of a full three-dimensional diffusion problem
to a one-dimensional diffusion-reaction equation allows for fast and efficient calculation of
the EACF. To obtain the correlation functions, N = 10° particle trajectories have been
generated. For typical values of the parameters, the relative error is of order of 0.3% at
t = 7p and of order 0.8% at t = 37p. Therefore the error bars are smaller than the size
of points and were not marked in the graphs.

Hydrodynamic interactions are of essential importance to describe the dynamics of
spherical colloids near walls. This can be seen from Figl where a comparison of EACF’s
is made as obtained from our simulations, which account for hydrodynamic interactions,
and the analytical solution® (which we will call LOS for Lan-Ostrowsky-Sornette), where
hydrodynamic interactions are completely neglected. The figures Pl and b are for two
different penetration depths. The data points are the simulation results and the lowest
curve are the results for a constant diffusion coefficient where hydrodynamic interactions
are neglected. As can be seen, there is a large deviation between the results with and

without hydrodynamic interactions, also for the initial slope.
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Figure 2. Numerical values for the EACF for two penetration depths at fixed values of the
wave-vector components parallel and perpendicular to the wall, typical for experiments. The
data points are simulation results. The dotted curve is the EACF obtained by neglecting
hydrodynamic interactions (LOS solution). The dashed curve is an approximation by means of
the first cumulant, while the solid line is the second cumulant approximation, given by eqns. (39])

and (0], respectively.

Also included in Fig. [ are the results from the first and second order cumulant ap-
proximation. In table [l the accuracies of the first- and second cumulant approximations
(given by eqns. ([B9) and (@0, respectively) are quantified as a function of the penetration
depth. The two right columns give the values of the EACF at which the first- and second
cumulant expansion deviates by 5% from its numerically calculated value, respectively.
For smaller values of the EACF the deviations are larger than 5%. Apparently, the
second cumulant approximation is almost exact for sufficiently large penetration depths,

typically of order ka ~ 1, and becomes less accurate for small penetration depth (large
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Table II. Values of the EACF g, for varying penetration depth (left column), at which the

deviation of the first cumulant approximation g§1) (middle column) and two-cumulant approx-

imation ggz) (right column) from the simulation results are 5%. The values of the scattering

vector components are gja =g a = 1.

~(1) ~(2)

ka 91 91

0.3 0.36 0.04
0.5 0.40 0.14
0.7 0.43 0.22
1 0.45 0.3
1.2 0.46 0.31
1.5 0.47 0.36

ka). Then the cumulant values calculated for large ka with the help of Table [l can be

used to predict the initial decay rate of the EACF.

V. EXPERIMENTAL

The EWDLS experiments were performed on poly (methyl methacrylate) (PMMA)
particles, which were sterically stabilized by a thin poly-12-hydrohystearic acid layer (pur-
chased from Andrew Schoffield, University of Edinburgh), in a refracting index matching
solvent mixture (ny = 1.498) consisting of cis-decaline and tetraline (20/80 w/w). The
solvent was chosen to minimize suspension turbidity and thereby multiple scattering, as
well as van der Waals interactions. The particle concentration was determined by drying
a small aliquot of the suspension and weighing the remaining polymer. We employed
standard DLS measurements to determine the particles hydrodynamic radius, where we
used three different methods to analyze the IACF namely cumulant analysis, stretched
exponential fitting and inverse Laplace transformation. The three methods gave a hy-
drodynamic radius of Ry = 98 nm varying less than 1 nm and indicated a size polydis-
peristy of less than five percent. The latter finding is confirmed by the observation that
the suspensions crystallize at sufficiently large particle volume fractions, which is usually
regarded as indication, that polydispersity effects can be excluded. As the particles are
not charged, and suspended in a non-polar solvent with matching dielectric properties,

DLVO interactions between the particles as well as between the wall and the particles can
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be neglected to a good approximation and the system may be regarded as a suspension
of hard spheres.

EWDLS experiments were performed with a home built instrument, based on a triple
axis diffractometer, which has been described in detail elsewhere!. As a light source
we used a frequency doubled Nd/Yag Laser (Excelsior; Spectra Physics) with a vacuum
wavelength of A = 532 nm and a nominal power output of 150 mW. In a typical EWDLS
experiment, a laser beam is incident on the interface between the sample and the glass
wall at an angle «; greater than the critical angle, resulting in total reflection which is
accompanied by an evanescent wave within the sample. The wave penetrates the medium,

and the penetration depth can be expressed as

2 :
~= A/Qﬂ\/(nl sin a;)2 — n3, (48)

where A is the laser vacuum wavelength, n; and ns are the refractive indices of glass
and solvent, respectively. The angle of incidence is as in Snell’s law, i. e. the angle
between the interface normal and the incident beam. The scattering vector q = ks — k.
is the wave vector difference between the scattered wave and the evanescent wave. The
components g and ¢, parallel and perpendicular to the wall, respectively, can be varied
independently through variation of the angles «, and 6, where «, is the angle between
the unit vector along k,, and the wall, while # is the angle between the projection of kj
onto the interface and k.. The two scattering-vector components are related to these two

angles as

q = 2mny \/1 + cos? o, — 2 cos . cos 0/)\, (49)

q1L = 2mngsin ar/)\. (50)

The time dependence of the correlation function varies with the penetration depth and
the two components of the scattering vector. For smaller penetration depths the near-
wall dynamics is probed, while for large penetration depths the form of the correlation
function will resemble that of the bulk correlation function. For relatively large g the
diffusive dynamics along the wall is primarily probed, while for large ¢, the diffusive
motion from and away from the wall is probed.

It turns out that there are huge fluctuations in the scattered intensity when the vol-
ume fraction of colloids is less than about 0.1. This is probably due to a too small
number of colloids within the scattering volume. These huge fluctuations render accurate

measurements of the IACF long time part at very low concentrations not feasible. We
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sample cell

£
HY
Incident beam Q'

Figure 3. Sketch of an EWDLS setup. The sample cell is illuminated by the evanescent wave
of a totally internally reflected beam. The geometry of beams determines the scattering vector
g and the penetration depth 2/k. The magnitudes of the incident and scattered wave vectors

are equal |ke| = |ks|.

therefore have to restrict the experiments to a volume fraction of 0.1. At this concentra-
tion the effects of inter-colloidal interactions can not be fully neglected, so that only a

semi-quantitative comparison to the theory is feasible.

Experimental results are given in Figll the empty triangles, for a concentration corre-
sponding to a volume fraction of 0.106. The left panel of plots if for a small penetration
depth (ka = 1.3), and the right panel is for a large penetration depth (ka = 0.77).
From top to bottom, the parallel component of the scattered wave vector increases (from
qa = 1.06, 1.49, to 1.92). For all plots, the perpendicular component of the scattered
wave vector is fixed to g, a = 1.49. The filled squares are the simulation results, the solid
lines correspond to the second cumulant approximation, and the dotted lines to the LOS
predictions, where hydrodynamic interactions are neglected. As can be seen, the simula-
tion results for infinite dilution are in reasonable agreement with the experiments. There
are deviations at later times, which can have two reasons. First of all the concentration
is not low enough to be able to completely neglect inter-colloidal interactions. Bulk DLS
measurements actually show that in the relevant g-range the IACF decay rates measured

at ¢ = 0.106 are about 30% smaller than those obtained at infinite dilution. Secondly,
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t/ ms t/ ms

Figure 4. Experimental correlation functions at a volume fraction of 0.106, for two penetration
depths x = 1.30/a and 0.77/a. Here q, = 1.49/a is the same for all experiments while g
varies from 1.06/a to 1.92/a, as indicated in the figures. The square symbols refer to simula-
tion predictions, while the empty triangles are the experimental results. The solid lines refer
to the second cumulant approximation, and the dashed lines are the LOS predictions where

hydrodynamic interactions are neglected.
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Figure 5. Experimental EACF showing a long time decay as described in the text (symbols)

together with the second cumulant (full line) and the LOS (dashed line) predictions.

in many EWDLS experiments a long time decay of the TACF, as shown in Fig. B is
observed, which so far is not yet well understood. A possible reason is*, unavoidable
heterodyne stray-light originating from surface defects which is scattered by colloids in
the bulk of the suspension into the detector. Due to the scattering optics, only the light
scattered from particles which are located in the solid angle defined by the position of the
defect and the detector aperture will be detected. This corresponds to scattering vectors
in the range smaller than approximately 10~* nm~! for the given set up. Taking into
account the particles bulk diffusion constant this will lead to relaxation times around 10
seconds and above. This might partly explain the slower decay of the experimental data
as compared to the simulations at longer times. In view of the good agreement between
simulation data and the second cumulant expansion, as discussed in section [V}, it is no
surprise that the second cumulant approximation also describes the experimental data

quite accurately. Again, the correlation functions without hydrodynamics (the dotted

lines) are far off from both experiments and simulations.

VI. CONCLUSIONS

Due to the complicated hydrodynamic interactions of colloids and a wall, it is not pos-
sible to derive a closed analytical expression for evanescent wave dynamic light scattering
(EWDLS) correlation functions. At infinite dilution, where inter-colloidal interactions

can be neglected, the electric field auto correlation function (EACF) for spherical colloids
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in bulk is simply equal to exp{—q?® Dyt}, where ¢ is the scattering wave vector and Dy
is the Einstein diffusion coefficient. A similar expression for the full time dependence of
the EWDLS-correlation, also at infinite dilution, has so far not been reported. It seems
that the full time dependence of EWDLS-correlation functions, even for very dilute sus-
pensions of spherical colloids, requires cumulant approximations and/or simulations. We
made a comparison between first- and first-two-cumulant approximations and results ob-
tained from a new simulation algorithm (with numerical errors that do not exceed the
size of points). These results are also compared to experiments on hard-sphere like col-
loids, where the penetration depth and scattering wave vectors are varied. The lowest
volume fraction at which reliable experimental results for the full time dependence of
EWDLS-correlation functions can be obtained is about 10 %. The first-two-cumulant ap-
proximation is surprisingly accurate, especially for somewhat larger penetration depths.
We quantified the accuracy of cumulant approximations as a function of the penetra-
tion depth in table [l This is important, since one can rely on an analytic form for the
correlation function based on the known forms of the first two cumulants. Furthermore,
there is reasonable agreement between the simulations and experiments. There are some
deviations at long times, which can be due to inter-colloidal interactions and/or to het-
erodyne stray light that is scattered in forward direction by colloids residing in the bulk.
For future experiments it would be desirable to use sample cells where the path length
of stray light through the bulk of the sample is minimized.

Now we have an understanding of the EWDLS correlation function for very dilute
suspensions of spherical colloids, the next step would be to include colloid-colloid inter-
actions, and to extend the present approach to non-spherical colloids. This is work in

progress.
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Appendix A: Calculation of the second cumulant

Using the definition of the adjoint Smoluchowski operator (2II) and the property
DP%(...) = P“D'(..), (A1)

where P ~ e 7® is the equilibrium probability distribution, we can write the average
in the second moment (26]) in a very convenient form
(o'el)
M2 = W- (A2)
We will now restrict ourselves to the hard-core interaction potential, but generalization
to arbitrary potential is straightforward. Denoting by a = § + iq1, and for ¢ defined as
under eq. (26]), we have
Diyp = oC, (A3)
where
C = (—aD'| +a’D, —¢iDy). (A4)
For the second moment we get then an expression in the form
M2 = —<6_m |O‘2>
(e7%2)

Clearly, pus is nonnegative. By direct substitution of C' from eq. ([A4) into the above

=(|C*), > 0. (A5)

equation and using the fact that by partial integration it follows that

(D01, =5 ((02)) =5 (D%, (A6)

we arrive at an expression for the second moment (B6). The coefficients accompanying
the combinations of powers of x and ¢ ; have been tabulated to provide a convenient
tool for approximating the EACF (see Table [).

We will now show that the second cumulant I'y is positive in this case. Consider the

following nonnegative expression
2
() = (|=a (DL = (D)) +* (D1 = (D1)a) = af (D) — (Dp)[*) 20, (A7)

Again, by partial integration it can be shown that (D', ), = k(D ).. The above formula
can be then rewritten using the first cumulant (32) and eq. (Ad) as

(6) =(IC=T1[), = {(C=T)(C" =T1)), = (|CI"), +TT = 21 (Re(C)),, =Tz, (AS)

where we have used the fact that (Re(C)), = I'y. The second term in the cumulant

expansion is therefore nonnegative, as it should be.
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Appendix B: Short time expansion of EACF with no hydrodynamic

interactions

In the 80s Lan, Ostrowsky and Sornette®, in an early attempt to analyze the experi-
mental data, developed an exact expression for g(k, g;t) in case where the hydrodynamic
interactions with the wall are neglected, i.e. D is constant in the half-space occupied by
the fluid and equals the single-particle bulk diffusion coefficient Dy. Their solution fac-
torizes into terms corresponding to the decay in the direction parallel and perpendicular

to the wall,

9(q, k;t) = g(q);t)g-(qL, K; t) (B1)

The 'parallel’” part is the usual expression for g in an unbounded fluid

91(qp;t) = exp {—qi Dot } , (B2)

while the 'perpendicular’ part can be conveniently written in terms of error function for

392

complex argument®? w(z) = e~ erfe(—iz) as

9:(qu1, ki t) = ; Kl + ﬂ) w(iZ) + (1 - ;i) w (iZ*)] 7 (B3)

2q1 qL

using a dimensionless quantity

) K kDot 2iq,
7 — Dt( —>: 14214 B4
0 ZQL‘FQ 5 ( + - ) (B4)

The variable Z depends on two dimensionless parameters: x+/Dyt/2 compares the electric
field penetration depth with the distance diffused by the particle, and 2q, /x compares
the penetration depth with the length scale on which the system is probed. In case of no
hydrodynamic interactions one can obtain an exact short-time expression of the EACF

using the following representation of the error function for complex argument3?
B5
nZ: r'(1 —|— n / 2)’ (B3)

where I' denotes the Euler Gamma function. Subsequent terms of the expansion of g,
are of the order t"/?, as Z ~ v/t. Expanding both parts of § up to the order 2, we get

2

K 2 2 4D3/2 K 2\ 43/2
g(q,ﬂ,t)zl—Do(Z+qL+q”)t+ﬁ(Z+qL>t (B6)

D? K2 K2 3K
+ 70 {CIAL + 2qf <Z + Qi) - (z + qi) (T - Qi)} 2+ O(t?).
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From this expansion, one identifies the first cumulant as

2
I't =Dy <QE +qt + Z) ; (B7)
which is in agreement with eq. (32) when D, | = Dy. The next term contributes as ¢3/2.

Therefore, the second cumulant of (g, x;t) does not exist and cannot be obtained as a
special case of eq. (B6]). The reason for this is the boundary condition on the wall, which
is different in case where D = Dy on the wall and D(z) — 0 as z — 0 in presence of

hydrodynamic interactions, as described in section [Tl
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