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In order to interpret measured intensity autocorrelation functions obtained in

evanescent wave scattering, their initial decay rates have been analyzed recently

[Phys. Rev. E 74, 021402 (2006), J. Chem. Phys. 132, 074704 (2010), J. Chem.

Phys 135, 014701 (2011)]. A theoretical analysis of the longer time dependence of

evanescent wave autocorrelation functions, beyond the initial decay, is still lacking.

In this paper we present such an analysis for very dilute suspensions of spherical

colloids. We present simulation results, a comparison to cumulant expansions, and

experiments. An efficient simulation method is developed which takes advantage

of the particular mathematical structure of the time-evolution equation of the

probability density function of the position coordinate of the colloidal sphere.

The computer simulation results are compared with analytic, first and second

order cumulant expansions. The only available analytical result for the full time

dependence of evanescent wave autocorrelation functions [Phys. Rev. Lett. 57,

17 (1986)], that neglects hydrodynamic interactions between the colloidal spheres

and the wall, is shown to be quite inaccurate. Experimental results are presented

and compared to the simulations and cumulant expansions.
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I. INTRODUCTION

The dynamics and microstructural ordering of macromolecules near interfaces is a

fundamental scientific theme that has drawn much attention the last few years, and is

of importance in many industrial and technological applications. Examples are coating

processes or any process where particles are deposited onto surfaces1, membrane filtering,

or any other process where dispersed particles migrate in porous media2 and more recently

micro-3 and optofluidics4. Interfacial effects also play an important role in biological

processes, like protein adsorption5, biofilm formation6 or the collective motion of sperm

cells near planar surfaces7.

In order to improve our understanding of these very complex processes, we have, as a

first step, to develop techniques which allow us to study the underlying physics in detail on

model systems. In the present contribution we are focusing on evanescent wave dynamic

light scattering (EWDLS)8,9 as a method to study the near wall dynamics of colloidal

spheres. In EWDLS-experiments a laser beam is totally reflected off the interface between

a glass wall and the sample solution, thereby creating an evanescent wave, which is used

to illuminate a region close to the wall. The extent of the near-wall scattering volume is

determined by the evanescent-wave penetration depth. By changing the incident angle

of the laser beam with respect to the interface, the penetration depth can be tuned, so

that a system can be probed on different length scales. Like for standard bulk dynamic

light scattering, the scattered light intensity autocorrelation function (IACF) is measured.

In case of suspensions of colloids in contact with a wall, the near-wall dynamics of the

colloids is to a large extent determined by hydrodynamic interactions with the wall which

are mediated via the solvent. The hydrodynamic friction forces differ for motion of a

colloid along and perpendicular to the wall10–12. This anisotropy in the hydrodynamic

interactions with the wall in combination with the evanescent illumination profile renders

the interpretation of EWDLS experiments much more involved as compared to bulk

scattering experiments. As a first step towards the interpretation of EWDLS correlation

functions, Lan, Ostrowsky and Sornette8 derived an analytic expression for the EWDLS

correlation function for spherical colloids and a hard wall, at very low concentrations of

colloids, with the neglect of hydrodynamic interactions. The deviation of this expression

from that for the bulk correlation function within their approximation is thus entirely

due to direct interactions. Hydrodynamic interactions, however, have a pronounced effect

on the form of the correlation function, and must therefore be accounted for. It seems
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not feasible to derive a similar analytic expression for the EWDLS correlation function

when hydrodynamic interactions of the colloidal sphere with the wall are included. It is

possible, though, to derive explicit expressions for the first cumulant, that is, the initial

slope of the time-dependence of the EWDLS correlation function, which expressions have

been verified experimentally13,14. A general expression for the first cumulant for arbitrary

concentrations of colloids can be derived, which has been evaluated explicitly to within a

leading order virial expansion, and by simulations for higher concentrations in an attempt

to interpret earlier experimental results at equally high concentrations15–17.

The first and second cumulant can be expressed in terms of the hydrodynamic mobil-

ities of a colloidal particle, where a distinction must be made for motion perpendicular

and parallel to the wall. The problem of determining friction and mobility coefficients of

a spherical particle near an interface has a history dating back to works of Lorentz18 and

Faxén19. In the 1960’s, solutions of the Stokes equation, either numerical, or in bipolar

coordinates, have been given for certain types of motion by O’Neill and coworkers20–22,

who also investigated the lubrication regime of the solution, and by Brenner et al.10–12.

In such a confined system the translational components of the mobility matrix µ tend to

zero when approaching the wall. This effect dominates in the dynamics of the system.

These predictions are verified in a number of experimental studies, using particles of dif-

ferent sizes, and employing various techniques: optical trap microscopy23, nano-PIV24,25,

dynamic light scattering in presence of two walls26, low coherence DLS27, resonance en-

hanced DLS28,29, and EWDLS in a system bounded by one or two walls8,13,14,30–32.

In this work, we will need the values of the mobility matrix elements for a single

sphere as a function of the particle-wall distance. To this end, Padé approximant repre-

sentation will be used, as outlined by Cichocki and Jones34 and earlier works of Perkins

and Jones35,36. This is a very convenient tool, since it allows for analytic differentiation

of the hydrodynamic mobilities in the whole range of distances from the wall with high

precision.

The initial temporal decay of EWDLS correlation functions for colloids near a wall

with hard-core interactions, as quantified by the first cumulant, has thus been addressed

in some detail (although some issues remain to be resolved). Nothing has been done so

far concerning the full time dependence of correlation functions, beyond the time regime

that is described by the first cumulant expansion. In this paper we take the first step

toward an understanding of the full time dependence of EWDLS correlation functions,
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where very dilute dispersions of spherical colloids are considered. Numerical simulation

results are compared to analytical first- and second cumulant approximations, and to

experiments.

This paper is organized as follows. In section II we present the general theoretical

framework on which the analytical cumulant expansion as well as the simulations are

based. In section III the cumulant expansion is discussed, and explicit expressions for the

first two cumulants are derived. Numerical results for the various contributions for varying

penetrations depths are given in the form of a table to enable easy and accurate evaluation

of first and second cumulants. The new simulation method is presented in section IV

and section V contains a comparison of experimental results with the predictions from

simulations and the cumulant expansions.

II. ONE-PARTICLE ELECTRIC FIELD CORRELATION FUNCTION

In an EWDLS experiment the illumination profile is nonuniform. The evanescent

wave enters the suspension (at the location of the wall), and its intensity varies with the

perpendicular distance z from the wall as exp(−κz). Typically, the penetration depth κ−1

is comparable to the size of colloidal particles. Given an ensemble of spherical colloids in

the configuration {Rj}, the instantaneous scattered electric field can be written as

E ∼
∑

j

exp
(
−κ

2
zj

)
exp(iq ·Rj), (1)

where q is the scattering vector. We assume that there are sufficiently many colloidal

particles within the volume that is illuminated by the evanescent wave and from which

scattered intensities are collected, that the scattered electric field is a Gaussian stochastic

process with mean zero, thus fulfilling the assumptions of Wick’s theorem. This allows

to express the measured intensity correlation function

gI(t) = 〈I(t)I(t = 0)〉 = 〈E(t)E∗(t)E(t = 0)E∗(t = 0)〉, (2)

as a combination of averaged bilinear products of the scattered field strength. As the

system is translationally invariant in the direction parallel to the wall, the average

〈E(t)E(t = 0)〉 equals 0. The resulting expression for the intensity correlation func-

tion in terms of the electric field correlation function is known as the Siegert relation,

which reads

gI(t) = I2(q)
[

1 + |ĝ(t)|2
]
, (3)
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where I(q) is the average light intensity value, which is time-independent, as the stochas-

tic process E(q, κ; t) is stationary. Furthermore, the normalized electric field autocorre-

lation function (EACF) is defined as

ĝ(q, κ; t) =
〈E(q, κ; t)E∗(q, κ; 0)〉

I(q)
. (4)

where 〈· · · 〉 denotes equilibrium ensemble averaging. From this definition, the initial

value of the EACF is

ĝ(q, κ; t = 0) = 1. (5)

According to eq.(1), the correlation function ĝ(q, κ; t), for the general N -particle case,

is proportional to

ĝ(q, κ; t) ∝ 1

N

N∑

i,j=1

〈
exp

{
−κ

2
(zi(t) + zj(0))

}
exp {−iq · (Ri(t) −Rj(0))}

〉
. (6)

For κ = 0, corresponding to an unbounded fluid, the thermodynamic limit lim∞ of the

right-hand side of the above expression is well-defined. However, for nonzero κ, the

problem is more subtle and has been properly treated in Ref. 15. As it has been shown

there, one should then consider a cubic box of volume V = LxLyLz, touching the wall

with its side with surface area A = LxLy. In the thermodynamic limit all dimensions

of the box are simultaneously stretched, keeping the density of particles n constant. To

assure existence of the right-hand side of eq.(6), a factor V/A must be added.

In a dilute system the description reduces to a one-particle problem and we can neglect

the terms with i 6= j in the sum above. Restricting to one-particle contributions to ĝ and

expressing the average using the conditional probability P (R, t|R0, 0) of a particle being

in position R at time t, given its position R0 at t = 0, we have, in thermodynamic limit

ĝ(q, κ; t) ∝ lim
∞

V

A

∫
dR

∫
dR0 e

−κ

2
(z+z0)e−iq·(R−R0)Peq(R0)P (R, t|R0, 0). (7)

The equilibrium distribution Peq(R) ∼ exp(−βΦ(z)) is determined by the interaction

potential Φ(z), depending only on the wall-particle distance z, and β = 1/kBT , where T

is the temperature and kB is the Boltzmann constant.

Because of translational invariance in the xy-plane, in thermodynamic limit the con-

ditional probability P (R, t|R0, 0) will be denoted by P (ρ, z, z0, t). The probability can

only depend on the z-positions, the distance perpendicular to the wall, and the length of

the horizontal displacement vector ρ = |ρ|, defined by the relation

R−R0 = ρ + (z − z0)êz, (8)
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Figure 1. Geometry of the system. The conditional probability density depends on the distance

from the wall and length of the parallel displacement vector ρ.

and marked in Fig. 1. We similarly decompose q into components parallel and perpen-

dicular to the wall

q = q⊥êz + q‖. (9)

Next, we introduce new variables (R + R0)/2 and R −R0 in eq.(7), and integrate over

(x + x0)/2 and (y + y0)/2. This leads to a factor A.

Since the normalization factor in Peq(R) is of the order of V , after performing the

thermodynamic limit, us the right-hand side of eq.(7) becomes

∞∫

a

dz

∞∫

a

dz0 e
−κ

2
(z+z0)e−iq⊥(z−z0)e−βΦ(z0)

∫
dρ e−iq‖·ρP (ρ, z, z0, t). (10)

Here, the lower integration limit is the radius a of the spherical colloid, which corresponds

to the closest approach of the sphere to the wall. Using that the initial value of the

conditional probability distribution P (R, t = 0|R0, 0) = δ(R − R0), we find the initial

value of (10) as
∞∫

a

dz e−κze−βΦ(z). (11)

Using the normalization condition (5), we express the EACF as

ĝ(q, κ; t) =

∞∫

a

dz

∞∫

a

dz0 e
−κ

2
(z+z0)e−iq⊥(z−z0)e−βΦ(z0)P̃ (q‖, z, z0, t)

∞∫

a

dz e−κze−βΦ(z)

, (12)

where we introduced a two dimensional Fourier transform of the probability density

function

P̃ (q‖, z, z0, t) =

∫
dρ e−iq‖·ρP (ρ, z, z0, t). (13)
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This expression will be used as a basis for the Brownian dynamics simulation in order

to obtain numerical values for the EWDLS correlation function. Note that in case of a

hard-core interaction potential (Φ = 0 when there is no overlap and Φ = ∞ otherwise),

the denominator in (12) reduces to exp(−κ a)/κ where a is the radius of the colloidal

sphere, yielding

ĝ(q, κ; t) = κ exp(κa)

∞∫

a

dz

∞∫

a

dz0 e
−κ

2
(z+z0)e−iq⊥(z−z0)e−βΦ(z0)P̃ (q‖, z, z0, t) (14)

In order to explicitly evaluate the EACF in eq.(14), the time dependence of the (par-

tially Fourier transformed) conditional probability density function (pdf) P̃ (q‖, z, z0, t)

must be specified. For this purpose we will return to eq. (7), in which the conditional

probability distribution P (R, t|R0, 0) satisfies the Smoluchowski equation for a single

colloidal sphere in presence of a wall

∂P (R, t|R0, 0)

∂t
= DP (R, t|R0, 0). (15)

Taking an arbitrary phase-space function h(R) and again denoting the potential of in-

teractions with the wall by Φ, the Smoluchowski operator D is given by

Dh(R) =
∂

∂R
·D(z) ·

[
∂

∂R
+ β

∂Φ

∂R

]
h(R). (16)

The diffusion matrix D(z) is connected with the mobility matrix via the relation

D(z) = kBTµ(z). (17)

The mobility matrix µ, which relates the force acting on a spherical particle to its velocity,

has the following structure in the considered frame of reference (z-axis perpendicular to

the wall, pointing into the fluid)

µ(z) =




µ‖(z) 0 0

0 µ‖(z) 0

0 0 µ⊥(z)


 , (18)

where the elements µ‖,⊥ depend only on the wall-particle distance z.

As already discussed in the introduction, the z-dependencies of the scalar mobilities

are well-known10,11,20. For large distances from the wall (z → ∞), the mobility functions

µ‖,⊥(z) tend to the bulk mobility coefficient µ0, which is related to the bulk diffusion

coefficient D0 = kBTµ0. In the limit of infinite penetration depth (κ → 0), there are
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no effects of interaction with the wall and the expression (14) reduces to the standard

exponential expression ĝ(q, κ; t) = exp{−D0q
2t} for free diffusion.

In section IV we discuss how the Smoluchowski equation, in combination with ex-

pression (14), will be used in a simulation scheme to obtain numerical results for the

correlation function. These results will be compared to a cumulant expansion, which is

discussed in the subsequent section.

III. CUMULANT EXPANSION OF THE EACF

Using the formal solution of the Smoluchowski equation (15)

P (R, t|R0, 0) = eDtP (R0) = eDtδ(R−R0), (19)

the EACF can be expanded in powers of the time evolution operator D, which leads to

the cumulant expansion. Inserting eq.(19) into the expression for the EACF leads to

ĝ(q, κ; t) ∝
∫

dR

∫
dR0 e

−κ

2
(z+z0)e−iq·(R−R0) exp{Dt}δ(R−R0)e

−βΦ(z0), (20)

It is convenient to introduce the adjoint Smoluchowski operator defined by the scalar

product ∫

z>a

dR f(R)Dh(R) =

∫

z>a

dRh(R)D†f(R), (21)

where f and h are arbitrary phase-space functions. From eq.(16), the adjoint operator is

found after partial integrations, using that the hydrodynamic mobility functions vanish

on contact with the wall, and reads

D
†h(R) =

[
∂

∂R
− β

∂Φ

∂R

]
·D(R) · ∂

∂R
h(R) (22)

Since D
† does not act on the variable R0, we can perform the integration over R0 in

eq.(20), due to the presence of the Dirac delta distribution, to obtain

ĝ(q, κ; t) ∝
∫

dR e−βΦ(z)eiq·Re−κz/2 exp{D†t}e−iq·Re−κz/2. (23)

Expanding the exponential for small times, the EACF can be written as

ĝ(q, κ; t) = 1 + µ1t +
µ2t

2

2
+ o(t2), (24)
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where two first moments are equal to

µ1 =

〈
ϕ∗

D
†ϕ
〉

〈e−κz〉 , (25)

µ2 =

〈
ϕ∗

D
†
D

†ϕ
〉

〈e−κz〉 , (26)

with ϕ ≡ e−iq·Re−κz/2. Re-exponentiation of eq.(24) thus leads to

ĝ(q, κ; t) = exp

(
−Γ1t +

1

2
Γ2t

2 + o(t2)

)
. (27)

where the first and second cumulants Γ1 and Γ2 are related to the moments in eq.(26) as

Γ1 = −µ1, (28)

Γ2 = µ2 − µ2
1. (29)

the first moment takes the form

µ1 = Γ1 =

∞∫

a

dz exp{−κz} exp{−βΦ(z)}
[
D‖(z)q2‖ + D⊥(z)

(
q2⊥ +

κ2

4

)]

∞∫

a

dz exp{−κz} exp{−βΦ(z)}
. (30)

Introducing the penetration-depth averaged diffusion coefficients for dilute suspension,

defined for an arbitrary z-dependent function by

〈B〉κ =

∞∫
a

dz exp{−κz} exp{−βΦ(z)}B(z)

∞∫
a

dz exp{−κz} exp{−βΦ(z)}
, (31)

in correspondence with the averages defined for arbitrary concentrations in Ref. 15, we

may conveniently write the first cumulant as

Γ1 = q2‖
〈
D‖

〉
κ

+

(
q2⊥ +

κ2

4

)
〈D⊥〉κ . (32)

The second moment, needed for calculation of the second cumulant, may be then

derived from eq. (26) as

µ2 = q4‖
〈
D2

‖

〉
κ

+

(
q2⊥ +

κ2

4

)2 〈
D2

⊥

〉
κ
− 2q2‖

(
κ2

4
− q2⊥

)〈
D‖D⊥

〉
κ

(33)

+ κq2‖

〈
D‖

(
dD⊥

dz
−D⊥β

dΦ

dz

)〉

κ

− κ

(
q2⊥ +

κ2

4

)〈
D⊥

(
dD⊥

dz
−D⊥β

dΦ

dz

)〉

κ

+

(
q2⊥ +

κ2

4

)〈(
dD⊥

dz
−D⊥β

dΦ

dz

)2
〉

κ

.
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This expression corrects the one given in an appendix in Ref. 14, which contains an

erroneous sign in the fourth and fifth term on the right-hand side.

We will now restrict to hard-core interaction potential

Φ(z) =





0 z > a,

∞ z ≤ a.
(34)

Evaluation of eq.(33) for a hard-core potential Φ(z) is subtle. The expression

−D⊥(z)β
dΦ

dz
e−βΦ = D⊥(z)

d

dz

(
e−βΦ

)
, (35)

within the averages, reduces then to D⊥(a)δ(z − a). With the neglect of hydrodynamic

interactions we have D⊥(z = a) 6= 0, and the last term on the right-hand side of eq.(33)

diverges, and therefore the second cumulant does not exist. The short-time expansion of

the exact solution in this (unphysical) case, which is discussed in the Appendix, shows

that the first term in the series is of order t, which guarantees the existence of the

first cumulant, while the next term is of order t3/2. Due to hydrodynamic interactions,

however, D(z) → 0 when z → a. This assures that the right-hand side of eq.(33) exists

and has a finite hard-core limit.

In this case the derivation, as we show in the Appendix, leads to the second moment

in the form

µ2 = q4‖
〈
D2

‖

〉
κ

+

(
q4⊥ − κ4

16

)〈
D2

⊥

〉
κ
− 2q2‖

(
κ2

4
− q2⊥

)〈
D‖D⊥

〉
κ

(36)

+ κq2‖
〈
D′

⊥D‖

〉
κ

+

(
q2⊥ +

κ2

4

)〈
(D′

⊥)
2
〉
κ
,

where the prime denotes a derivative with respect to z. In addition, the penetration-depth

average (see eq.(31)) for the hard-core potential (34) reduces to

〈B〉κ = κ

∞∫

a

dz exp{−κ(z − a)}B(z). (37)

The Appendix contains also the proof that Γ2, constructed using µ1 and µ2 as in (29),

is nonnegative.

We calculated values of the coefficients appearing in both moments in Table I using the

method given by Cichocki and Jones34. In this method, Padé approximant representation

is used for the friction matrix, which relates velocity and angular velocity to the force and

torque acting on the sphere. By inversion of the friction matrix we obtain the mobility

matrix37. Then, using eq. (17), we calculate D⊥(z) and D‖(z).
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For convenience, in the Table we rescaled the diffusion coefficients by the single particle

bulk diffusion coefficient D0 = kBT/6πηa, introducing

D̄⊥ =
D⊥

D0

, D̄‖ =
D‖

D0

, (38)

with the temperature T and η being the solvent viscosity. Once the experimental param-

eters κ, q‖, q⊥, are known, the table allows for a fast and straightforward calculation of

two approximations to the EACF (4) - by means of the first cumulant

ĝ(1)(t) = exp(−Γ1t), (39)

and the second cumulant approximation

ĝ(2)(t) = exp(−Γ1t + 1
2
Γ2t

2). (40)

For hard-core interactions, the cumulant expansion (24) can be performed only up

to the third order for the following reason. The diffusion coefficients are non-analytical

at z = a, and their lubrication asymptotic behaviour can be expressed in terms of the

dimensionless gap width between the surface of the sphere and the wall ε = (z − a)/a

as34

D̄⊥ ∼ ε + 1
5
ε2 log ε, (41)

D̄‖ ∼ −2(log ε)−1. (42)

The adjoint Smoluchowski operator D† contains two derivatives with respect to z, so that

consecutive terms in the cumulant expansion contain averages of higher order derivatives

of D⊥ and D‖. Careful analysis of the integrals in these averages, taking into account

the nonanalytic behaviour of the diffusion coefficients in the proximity the wall, given

by (41) and (42), leads to a conclusion that the third cumulant exists, while the fourth

cumulant and all higher ones do not exist.

It is worth noticing that when the penetration depth is small (which corresponds to

large values of κa), the penetration-depth averages of the diffusion coefficients in Table I

become small as well. The reason for such behaviour is that in this case only the particles

that are very close to the wall contribute to the average. Moreover, for those particles,

their diffusion coefficients decrease due to the hydrodynamic interactions with the wall

(see eqns. (41) and (42)).
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Table I. Components of first and second cumulant of the EACF for hard-core interaction between

the wall and the particle. The values of the cumulants can be reproduced from eq. (32) and (36)

by using the above averaged values of the diffusion coefficients. The prime denotes derivative

with respect to z, and the bar denotes the diffusion coefficients rescaled by the single-particle

bulk diffusion coefficient D0, D̄⊥,‖ = D⊥,‖/D0.

κa First cumulant Second cumulant
〈
D̄‖

〉
κ

〈
D̄⊥

〉
κ

〈
D̄2

‖

〉

κ

〈
D̄2

⊥

〉
κ

〈
D̄‖D̄⊥

〉
κ

a
〈
D̄′

⊥D̄‖

〉
κ

a2
〈
(D̄′

⊥)
2
〉
κ

0.1 0.884 0.781 0.796 0.652 0.715 0.053 0.029

0.2 0.831 0.682 0.708 0.516 0.597 0.088 0.055

0.3 0.791 0.612 0.647 0.429 0.517 0.115 0.079

0.4 0.761 0.559 0.600 0.367 0.459 0.137 0.101

0.5 0.736 0.516 0.563 0.321 0.414 0.155 0.121

0.6 0.715 0.481 0.533 0.284 0.377 0.171 0.141

0.7 0.697 0.451 0.507 0.254 0.347 0.184 0.159

0.8 0.681 0.425 0.485 0.230 0.322 0.195 0.176

0.9 0.667 0.403 0.466 0.209 0.300 0.206 0.192

1 0.654 0.383 0.449 0.191 0.281 0.214 0.208

1.1 0.643 0.365 0.434 0.176 0.264 0.222 0.222

1.2 0.632 0.349 0.420 0.163 0.249 0.230 0.236

1.3 0.622 0.335 0.408 0.151 0.236 0.236 0.249

1.4 0.614 0.322 0.396 0.141 0.224 0.242 0.262

1.5 0.605 0.310 0.386 0.131 0.213 0.247 0.274

1.7 0.591 0.288 0.368 0.116 0.194 0.256 0.297

1.9 0.578 0.270 0.352 0.103 0.179 0.264 0.318

2 0.572 0.262 0.345 0.097 0.172 0.268 0.328

5 0.473 0.140 0.236 0.031 0.078 0.311 0.518

7 0.442 0.108 0.206 0.019 0.056 0.317 0.587

9 0.420 0.088 0.186 0.013 0.043 0.319 0.636
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IV. SIMULATION PROCEDURE

A fast numerical scheme for the calculation of the EACF for all times relies on the

structure of the hydrodynamic mobility matrix µ. Because of translational invariance in

the xy-plane parallel to the wall, the structure of the probability distribution function

(pdf) in that plane is purely Gaussian, with a z-dependent diffusion coefficient D‖(z).

This leads to the idea that the pdf for the Brownian particle can be recovered by tracing

only the trajectory in the z-direction, where the diffusion coefficient is given by D⊥(z),

and account for the Gaussian evolution in the parallel plane in a different way. We start

from the Smoluchowski equation (15), written in a more explicit form as

∂P (ρ, z, z0, t)

∂t
=

∂

∂z

(
D⊥(z)

∂P (ρ, z, z0, t)

∂z

)
+ D‖(z)

(
∂2

∂x2
+

∂2

∂y2

)
P (ρ, z, z0, t). (43)

Because of symmetry, the pdf P depends only on the initial and final vertical coordinates

z and z0, and displacement in the xy-plane parallel to the wall, represented by the vector

ρ (see Fig.1).

Performing the Fourier transformation in the xy-plane, and denoting the transformed

pdf by P̃ ≡ P̃ (q‖, z, z0, t), as in eq.(13), we obtain an equation of the form

∂P̃

∂t
=

∂

∂z

(
D⊥(z)

∂P̃

∂z

)
− q‖D‖(z)P̃ . (44)

This can be regarded as a one-dimensional diffusion-reaction equation, or a diffusion

equation with a probability sink. The reduction from the three-dimensional Smoluchowski

equation to one dimension allows for significant acceleration of the simulation.

Putting eq.(44) in the following form

P̃ (q‖, z, z0, t) = eLtP̃ (q‖, z, z0, t = 0), (45)

we can decompose the evolution operator L into two distinct parts: the diffusion operator

L1 = ∂z[D⊥(z)∂z(·)], and the probability-sink operator L2 = −q2‖D‖(z). To obtain

a suitable numerical scheme, we use the Trotter identity33 and treat each part in a

different way. The evolution according to L1 can be obtained from a Brownian dynamics

numerical scheme. We generate trajectories of Brownian particles in the z-direction.

Obtained trajectories build the corresponding probability distribution and are then used

as an ensemble for calculating averages. Every Brownian dynamics step is followed by

application of L2. We account for this type of evolution by introducing a decay of P̃ ,

13



according to

P̃ (q‖, z, z0, t + ∆t) = eL2∆tP̃ (q‖, z, z0, t) = P̃ (q‖, z, z0, t)e
−q2

‖
D‖(z)∆t. (46)

The weight a particle contributes to the probability distribution is dependent on its

trajectory. For evaluation of the diffusion coefficients D‖(z) and D⊥(z), we use the

results of Cichocki and Jones34.

Results are presented in terms of dimensionless quantities, where lengths are scaled

to the particle radius a, while the timescale is set by the structural relaxation time

τD = a2/D0, i.e. the time needed for the particle to diffuse over its own radius. For

comparison with experiments, D0 is calculated for given experimental conditions and the

hydrodynamic radius of the particles is determined from bulk measurements.

To generate the trajectories of Brownian particles, we employ the first-order Ermak-

McCammon scheme38, modified by the presence of the sink term. Particle positions in

the z-direction are updated in each time step according to

z(t + ∆t) = z(t) + D′
⊥(z)∆t +

√
2D⊥(z)∆t n (47)

where n is a Gaussian random variable with zero mean and unit variance. Next, we

account for the probability-sink term, according to eq.(46). This procedure is repeated in

every step of the simulation. The reduction of a full three-dimensional diffusion problem

to a one-dimensional diffusion-reaction equation allows for fast and efficient calculation of

the EACF. To obtain the correlation functions, N = 105 particle trajectories have been

generated. For typical values of the parameters, the relative error is of order of 0.3% at

t = τD and of order 0.8% at t = 3τD. Therefore the error bars are smaller than the size

of points and were not marked in the graphs.

Hydrodynamic interactions are of essential importance to describe the dynamics of

spherical colloids near walls. This can be seen from Fig.2, where a comparison of EACF’s

is made as obtained from our simulations, which account for hydrodynamic interactions,

and the analytical solution8 (which we will call LOS for Lan-Ostrowsky-Sornette), where

hydrodynamic interactions are completely neglected. The figures 2a and b are for two

different penetration depths. The data points are the simulation results and the lowest

curve are the results for a constant diffusion coefficient where hydrodynamic interactions

are neglected. As can be seen, there is a large deviation between the results with and

without hydrodynamic interactions, also for the initial slope.
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Figure 2. Numerical values for the EACF for two penetration depths at fixed values of the

wave-vector components parallel and perpendicular to the wall, typical for experiments. The

data points are simulation results. The dotted curve is the EACF obtained by neglecting

hydrodynamic interactions (LOS solution). The dashed curve is an approximation by means of

the first cumulant, while the solid line is the second cumulant approximation, given by eqns.(39)

and (40), respectively.

Also included in Fig. 2 are the results from the first and second order cumulant ap-

proximation. In table II the accuracies of the first- and second cumulant approximations

(given by eqns. (39) and (40), respectively) are quantified as a function of the penetration

depth. The two right columns give the values of the EACF at which the first- and second

cumulant expansion deviates by 5 % from its numerically calculated value, respectively.

For smaller values of the EACF the deviations are larger than 5 %. Apparently, the

second cumulant approximation is almost exact for sufficiently large penetration depths,

typically of order κa ∼ 1, and becomes less accurate for small penetration depth (large

15



Table II. Values of the EACF ĝ, for varying penetration depth (left column), at which the

deviation of the first cumulant approximation ĝ
(1)
1 (middle column) and two-cumulant approx-

imation ĝ
(2)
1 (right column) from the simulation results are 5%. The values of the scattering

vector components are q‖a = q⊥a = 1.

κa ĝ
(1)
1 ĝ

(2)
1

0.3 0.36 0.04

0.5 0.40 0.14

0.7 0.43 0.22

1 0.45 0.3

1.2 0.46 0.31

1.5 0.47 0.36

κa). Then the cumulant values calculated for large κa with the help of Table I can be

used to predict the initial decay rate of the EACF.

V. EXPERIMENTAL

The EWDLS experiments were performed on poly (methyl methacrylate) (PMMA)

particles, which were sterically stabilized by a thin poly-12-hydrohystearic acid layer (pur-

chased from Andrew Schoffield, University of Edinburgh), in a refracting index matching

solvent mixture (n2 = 1.498) consisting of cis-decaline and tetraline (20/80 w/w). The

solvent was chosen to minimize suspension turbidity and thereby multiple scattering, as

well as van der Waals interactions. The particle concentration was determined by drying

a small aliquot of the suspension and weighing the remaining polymer. We employed

standard DLS measurements to determine the particles hydrodynamic radius, where we

used three different methods to analyze the IACF namely cumulant analysis, stretched

exponential fitting and inverse Laplace transformation. The three methods gave a hy-

drodynamic radius of RH = 98 nm varying less than 1 nm and indicated a size polydis-

peristy of less than five percent. The latter finding is confirmed by the observation that

the suspensions crystallize at sufficiently large particle volume fractions, which is usually

regarded as indication, that polydispersity effects can be excluded. As the particles are

not charged, and suspended in a non-polar solvent with matching dielectric properties,

DLVO interactions between the particles as well as between the wall and the particles can
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be neglected to a good approximation and the system may be regarded as a suspension

of hard spheres.

EWDLS experiments were performed with a home built instrument, based on a triple

axis diffractometer, which has been described in detail elsewhere14. As a light source

we used a frequency doubled Nd/Yag Laser (Excelsior; Spectra Physics) with a vacuum

wavelength of λ = 532 nm and a nominal power output of 150 mW. In a typical EWDLS

experiment, a laser beam is incident on the interface between the sample and the glass

wall at an angle αi greater than the critical angle, resulting in total reflection which is

accompanied by an evanescent wave within the sample. The wave penetrates the medium,

and the penetration depth can be expressed as

2

κ
= λ

/
2π
√

(n1 sinαi)2 − n2
2, (48)

where λ is the laser vacuum wavelength, n1 and n2 are the refractive indices of glass

and solvent, respectively. The angle of incidence is as in Snell’s law, i. e. the angle

between the interface normal and the incident beam. The scattering vector q = ks − ke

is the wave vector difference between the scattered wave and the evanescent wave. The

components q‖ and q⊥ parallel and perpendicular to the wall, respectively, can be varied

independently through variation of the angles αr and θ, where αr is the angle between

the unit vector along ks, and the wall, while θ is the angle between the projection of ks

onto the interface and ke. The two scattering-vector components are related to these two

angles as

q‖ = 2πn2

√
1 + cos2 αr − 2 cosαr cos θ

/
λ, (49)

q⊥ = 2πn2 sinαr

/
λ. (50)

The time dependence of the correlation function varies with the penetration depth and

the two components of the scattering vector. For smaller penetration depths the near-

wall dynamics is probed, while for large penetration depths the form of the correlation

function will resemble that of the bulk correlation function. For relatively large q‖ the

diffusive dynamics along the wall is primarily probed, while for large q⊥ the diffusive

motion from and away from the wall is probed.

It turns out that there are huge fluctuations in the scattered intensity when the vol-

ume fraction of colloids is less than about 0.1. This is probably due to a too small

number of colloids within the scattering volume. These huge fluctuations render accurate

measurements of the IACF long time part at very low concentrations not feasible. We
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Lase
r

Incident beam

sample cell

Figure 3. Sketch of an EWDLS setup. The sample cell is illuminated by the evanescent wave

of a totally internally reflected beam. The geometry of beams determines the scattering vector

q and the penetration depth 2/κ. The magnitudes of the incident and scattered wave vectors

are equal |ke| = |ks|.

therefore have to restrict the experiments to a volume fraction of 0.1. At this concentra-

tion the effects of inter-colloidal interactions can not be fully neglected, so that only a

semi-quantitative comparison to the theory is feasible.

Experimental results are given in Fig.4, the empty triangles, for a concentration corre-

sponding to a volume fraction of 0.106. The left panel of plots if for a small penetration

depth (κa = 1.3), and the right panel is for a large penetration depth (κa = 0.77).

From top to bottom, the parallel component of the scattered wave vector increases (from

q‖a = 1.06, 1.49, to 1.92). For all plots, the perpendicular component of the scattered

wave vector is fixed to q⊥a = 1.49. The filled squares are the simulation results, the solid

lines correspond to the second cumulant approximation, and the dotted lines to the LOS

predictions, where hydrodynamic interactions are neglected. As can be seen, the simula-

tion results for infinite dilution are in reasonable agreement with the experiments. There

are deviations at later times, which can have two reasons. First of all the concentration

is not low enough to be able to completely neglect inter-colloidal interactions. Bulk DLS

measurements actually show that in the relevant q-range the IACF decay rates measured

at φ = 0.106 are about 30% smaller than those obtained at infinite dilution. Secondly,
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Figure 4. Experimental correlation functions at a volume fraction of 0.106, for two penetration

depths κ = 1.30/a and 0.77/a. Here q⊥ = 1.49/a is the same for all experiments while q‖

varies from 1.06/a to 1.92/a, as indicated in the figures. The square symbols refer to simula-

tion predictions, while the empty triangles are the experimental results. The solid lines refer

to the second cumulant approximation, and the dashed lines are the LOS predictions where

hydrodynamic interactions are neglected.

19



10-4 10-3 10-2 10-1 100 101 102 103 104 105

0.0

0.2

0.4

0.6

0.8

1.0

 

 

 second cumulant prediction
 no HI prediction
 experiment

g(
t)

t / ms

=0.106
a = 0.77

q||a=1.06
q a=1.49

Figure 5. Experimental EACF showing a long time decay as described in the text (symbols)

together with the second cumulant (full line) and the LOS (dashed line) predictions.

in many EWDLS experiments a long time decay of the IACF, as shown in Fig. 5, is

observed, which so far is not yet well understood. A possible reason is40, unavoidable

heterodyne stray-light originating from surface defects which is scattered by colloids in

the bulk of the suspension into the detector. Due to the scattering optics, only the light

scattered from particles which are located in the solid angle defined by the position of the

defect and the detector aperture will be detected. This corresponds to scattering vectors

in the range smaller than approximately 10−4 nm−1 for the given set up. Taking into

account the particles bulk diffusion constant this will lead to relaxation times around 10

seconds and above. This might partly explain the slower decay of the experimental data

as compared to the simulations at longer times. In view of the good agreement between

simulation data and the second cumulant expansion, as discussed in section IV, it is no

surprise that the second cumulant approximation also describes the experimental data

quite accurately. Again, the correlation functions without hydrodynamics (the dotted

lines) are far off from both experiments and simulations.

VI. CONCLUSIONS

Due to the complicated hydrodynamic interactions of colloids and a wall, it is not pos-

sible to derive a closed analytical expression for evanescent wave dynamic light scattering

(EWDLS) correlation functions. At infinite dilution, where inter-colloidal interactions

can be neglected, the electric field auto correlation function (EACF) for spherical colloids
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in bulk is simply equal to exp{−q2D0 t}, where q is the scattering wave vector and D0

is the Einstein diffusion coefficient. A similar expression for the full time dependence of

the EWDLS-correlation, also at infinite dilution, has so far not been reported. It seems

that the full time dependence of EWDLS-correlation functions, even for very dilute sus-

pensions of spherical colloids, requires cumulant approximations and/or simulations. We

made a comparison between first- and first-two-cumulant approximations and results ob-

tained from a new simulation algorithm (with numerical errors that do not exceed the

size of points). These results are also compared to experiments on hard-sphere like col-

loids, where the penetration depth and scattering wave vectors are varied. The lowest

volume fraction at which reliable experimental results for the full time dependence of

EWDLS-correlation functions can be obtained is about 10 %. The first-two-cumulant ap-

proximation is surprisingly accurate, especially for somewhat larger penetration depths.

We quantified the accuracy of cumulant approximations as a function of the penetra-

tion depth in table II. This is important, since one can rely on an analytic form for the

correlation function based on the known forms of the first two cumulants. Furthermore,

there is reasonable agreement between the simulations and experiments. There are some

deviations at long times, which can be due to inter-colloidal interactions and/or to het-

erodyne stray light that is scattered in forward direction by colloids residing in the bulk.

For future experiments it would be desirable to use sample cells where the path length

of stray light through the bulk of the sample is minimized.

Now we have an understanding of the EWDLS correlation function for very dilute

suspensions of spherical colloids, the next step would be to include colloid-colloid inter-

actions, and to extend the present approach to non-spherical colloids. This is work in

progress.
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Appendix A: Calculation of the second cumulant

Using the definition of the adjoint Smoluchowski operator (21) and the property

DP eq(...) = P eq
D

†(...), (A1)

where P eq ∼ e−βΦ is the equilibrium probability distribution, we can write the average

in the second moment (26) in a very convenient form

µ2 =

〈∣∣D†ϕ
∣∣2
〉

〈e−κz〉 . (A2)

We will now restrict ourselves to the hard-core interaction potential, but generalization

to arbitrary potential is straightforward. Denoting by α = κ
2

+ iq⊥, and for ϕ defined as

under eq. (26), we have

D
†ϕ = ϕC, (A3)

where

C = (−αD′
⊥ + α2D⊥ − q2‖D‖). (A4)

For the second moment we get then an expression in the form

µ2 =

〈
e−κz |C|2

〉

〈e−κz〉 =
〈
|C|2

〉
κ
≥ 0. (A5)

Clearly, µ2 is nonnegative. By direct substitution of C from eq. (A4) into the above

equation and using the fact that by partial integration it follows that

〈D′
⊥D⊥〉κ =

1

2

〈(
D2

⊥

)′〉
κ

=
κ

2

〈
D2

⊥

〉
κ
, (A6)

we arrive at an expression for the second moment (36). The coefficients accompanying

the combinations of powers of κ and q‖,⊥ have been tabulated to provide a convenient

tool for approximating the EACF (see Table I).

We will now show that the second cumulant Γ2 is positive in this case. Consider the

following nonnegative expression

(⋆) =
〈∣∣−α (D′

⊥ − 〈D′
⊥〉κ) + α2 (D⊥ − 〈D⊥〉κ) − q2‖

(
D‖ − 〈D‖〉κ

)∣∣2
〉
κ
≥ 0. (A7)

Again, by partial integration it can be shown that 〈D′
⊥〉κ = κ〈D⊥〉κ. The above formula

can be then rewritten using the first cumulant (32) and eq. (A4) as

(⋆) =
〈
|C − Γ1|2

〉
κ

= 〈(C − Γ1)(C
∗ − Γ1)〉κ =

〈
|C|2

〉
κ

+ Γ2
1 − 2Γ1 〈Re(C)〉κ = Γ2, (A8)

where we have used the fact that 〈Re(C)〉κ = Γ1. The second term in the cumulant

expansion is therefore nonnegative, as it should be.
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Appendix B: Short time expansion of EACF with no hydrodynamic

interactions

In the 80s Lan, Ostrowsky and Sornette8, in an early attempt to analyze the experi-

mental data, developed an exact expression for ĝ(κ, q; t) in case where the hydrodynamic

interactions with the wall are neglected, i.e. D is constant in the half-space occupied by

the fluid and equals the single-particle bulk diffusion coefficient D0. Their solution fac-

torizes into terms corresponding to the decay in the direction parallel and perpendicular

to the wall,

ĝ(q, κ; t) = g‖(q‖; t)gz(q⊥, κ; t) (B1)

The ’parallel’ part is the usual expression for ĝ in an unbounded fluid

g‖(q‖; t) = exp
{
−q2‖D0t

}
, (B2)

while the ’perpendicular’ part can be conveniently written in terms of error function for

complex argument39 w(x) = e−x2

erfc(−ix) as

gz(q⊥, κ; t) =
1

2

[(
1 +

iκ

2q⊥

)
w (iZ) +

(
1 − iκ

2q⊥

)
w (iZ∗)

]
, (B3)

using a dimensionless quantity

Z =
√
D0t

(
iq⊥ +

κ

2

)
=

κ
√
D0t

2

(
1 +

2iq⊥
κ

)
. (B4)

The variable Z depends on two dimensionless parameters: κ
√
D0t/2 compares the electric

field penetration depth with the distance diffused by the particle, and 2q⊥/κ compares

the penetration depth with the length scale on which the system is probed. In case of no

hydrodynamic interactions one can obtain an exact short-time expression of the EACF

using the following representation of the error function for complex argument39

w(x) =
∞∑

n=0

(ix)n

Γ(1 + n/2)
, (B5)

where Γ denotes the Euler Gamma function. Subsequent terms of the expansion of g⊥

are of the order tn/2, as Z ∼
√
t. Expanding both parts of ĝ up to the order t2, we get

g(q, κ, t) = 1 −D0

(
κ2

4
+ q2⊥ + q2‖

)
t +

4D
3/2
0

3
√
π

(
κ2

4
+ q2⊥

)
t3/2 (B6)

+
D2

0

2

[
q4‖ + 2q2‖

(
κ2

4
+ q2⊥

)
−
(
κ2

4
+ q2⊥

)(
3κ2

4
− q2⊥

)]
t2 + O(t5/2).
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From this expansion, one identifies the first cumulant as

Γ1 = D0

(
q2‖ + q2⊥ +

κ2

4

)
, (B7)

which is in agreement with eq. (32) when D⊥,‖ = D0. The next term contributes as t3/2.

Therefore, the second cumulant of ĝ(q, κ; t) does not exist and cannot be obtained as a

special case of eq. (36). The reason for this is the boundary condition on the wall, which

is different in case where D = D0 on the wall and D(z) → 0 as z → 0 in presence of

hydrodynamic interactions, as described in section III.
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