000021659 001__ 21659
000021659 005__ 20180209101454.0
000021659 0247_ $$2pmid$$apmid:22466529
000021659 0247_ $$2DOI$$a10.1007/s11120-012-9731-z
000021659 0247_ $$2WOS$$aWOS:000308188800020
000021659 037__ $$aPreJuSER-21659
000021659 041__ $$aeng
000021659 082__ $$a580
000021659 084__ $$2WoS$$aPlant Sciences
000021659 1001_ $$0P:(DE-HGF)0$$aKrause, G.H.$$b0
000021659 245__ $$aPhotosynthesis, photoprotection, and  growth of shade-tolerant tropical tree  seedlings under full sunlight
000021659 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2012
000021659 300__ $$a273-285
000021659 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021659 3367_ $$2DataCite$$aOutput Types/Journal article
000021659 3367_ $$00$$2EndNote$$aJournal Article
000021659 3367_ $$2BibTeX$$aARTICLE
000021659 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021659 3367_ $$2DRIVER$$aarticle
000021659 440_0 $$014201$$aPhotosynthesis Research$$v113$$x0166-8595$$y12
000021659 500__ $$aWe thank Maria Graf for competent assistance in HPLC analyses. The study was supported by the Smithsonian Tropical Research Institute, Panama, and Deutsche Forschungsgemeinschaft (DFG), Germany.
000021659 520__ $$aHigh solar radiation in the tropics is known to cause transient reduction in photosystem II (PSII) efficiency and CO(2) assimilation in sun-exposed leaves, but little is known how these responses affect the actual growth performance of tropical plants. The present study addresses this question. Seedlings of five woody neotropical forest species were cultivated under full sunlight and shaded conditions. In full sunlight, strong photoinhibition of PSII at midday was documented for the late-successional tree species Ormosia macrocalyx and Tetragastris panamensis and the understory/forest gap species, Piper reticulatum. In leaves of O. macrocalyx, PSII inhibition was accompanied by substantial midday depression of net CO(2) assimilation. Leaves of all species had increased pools of violaxanthin-cycle pigments. Other features of photoacclimation, such as increased Chl a/b ratio and contents of lutein, β-carotene and tocopherol varied. High light caused strong increase of tocopherol in leaves of T. panamensis and another late-successional species, Virola surinamensis. O. macrocalyx had low contents of tocopherol and UV-absorbing substances. Under full sunlight, biomass accumulation was not reduced in seedlings of T. panamensis, P. reticulatum, and V. surinamensis, but O. macrocalyx exhibited substantial growth inhibition. In the highly shade-tolerant understory species Psychotria marginata, full sunlight caused strongly reduced growth of most individuals. However, some plants showed relatively high growth rates under full sun approaching those of seedlings at 40 % ambient irradiance. It is concluded that shade-tolerant tropical tree seedlings can achieve efficient photoacclimation and high growth rates in full sunlight.
000021659 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000021659 588__ $$aDataset connected to Web of Science, Pubmed
000021659 65320 $$2Author$$aChlorophyll fluorescence
000021659 65320 $$2Author$$aCO2 assimilation
000021659 65320 $$2Author$$aPhotoacclimation
000021659 65320 $$2Author$$aPhotoinhibition of photosystem II
000021659 65320 $$2Author$$aPhotosynthetic pigments
000021659 65320 $$2Author$$aShade-tolerant tropical trees
000021659 65320 $$2Author$$aTocopherol
000021659 650_7 $$2WoSType$$aJ
000021659 7001_ $$0P:(DE-HGF)0$$aWinter, K.$$b1
000021659 7001_ $$0P:(DE-Juel1)129358$$aMatsubara, S.$$b2$$uFZJ
000021659 7001_ $$0P:(DE-HGF)0$$aKrause, B.$$b3
000021659 7001_ $$0P:(DE-HGF)0$$aJahns, P.$$b4
000021659 7001_ $$0P:(DE-HGF)0$$aVirgo, A.$$b5
000021659 7001_ $$0P:(DE-HGF)0$$aAranda, J.$$b6
000021659 7001_ $$0P:(DE-HGF)0$$aGarcía, M.$$b7
000021659 773__ $$0PERI:(DE-600)1475688-2$$a10.1007/s11120-012-9731-z$$gVol. 113$$n1-3$$p273-285$$q113$$tPhotosynthesis research$$v113$$x0166-8595$$y2012
000021659 8567_ $$uhttp://dx.doi.org/10.1007/s11120-012-9731-z
000021659 909CO $$ooai:juser.fz-juelich.de:21659$$pVDB
000021659 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000021659 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000021659 9141_ $$y2012
000021659 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021659 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021659 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021659 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021659 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021659 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021659 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021659 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021659 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000021659 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021659 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000021659 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000021659 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000021659 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x0
000021659 970__ $$aVDB:(DE-Juel1)137686
000021659 980__ $$aVDB
000021659 980__ $$aConvertedRecord
000021659 980__ $$ajournal
000021659 980__ $$aI:(DE-Juel1)IBG-2-20101118
000021659 980__ $$aUNRESTRICTED