001     21696
005     20240529111748.0
024 7 _ |2 DOI
|a 10.1007/s11664-012-1997-6
024 7 _ |2 WOS
|a WOS:000304205100132
037 _ _ |a PreJuSER-21696
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-HGF)0
|a Aabdin, Z.
|b 0
245 _ _ |a Nanostructure, excitations, and thermoelectric properties of Bi2Te3-based nanomaterials
260 _ _ |a Warrendale, Pa
|b TMS
|c 2012
300 _ _ |a 1792 - 1798
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 3269
|a Journal of Electronic Materials
|v 41
|x 0361-5235
|y 6
500 _ _ |a Financial support by the German Research Foundation (DFG) is gratefully acknowledged, Priority Programme 1386 "Nanostructured Thermoelectric Materials: Theory, Model Systems and Controlled Synthesis.'' O.E. and N.P. thank Dr. Martina Luysberg for help with aberration-corrected STEM at the Ernst Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Julich. R.P.H. and D.B. acknowledge funding from the Helmholtz Association of German Research Center (NG-407) as well as the European Synchrotron Radiation Facility and the Advanced Photon Source for provision of beam time at ID22N and 6-IDD, respectively.
520 _ _ |a The effect of dimensionality and nanostructure on thermoelectric properties in Bi2Te3-based nanomaterials is summarized. Stoichiometric, single-crystalline Bi2Te3 nanowires were prepared by potential-pulsed electrochemical deposition in a nanostructured Al2O3 matrix, yielding transport in the basal plane. Polycrystalline, textured Sb2Te3 and Bi2Te3 thin films were grown at room temperature using molecular beam epitaxy and subsequently annealed at 250A degrees C. Sb2Te3 films revealed low charge carrier density of 2.6 x 10(19) cm(-3), large thermopower of 130 V K-1, and large charge carrier mobility of 402 cm(2) V-1 s(-1). Bi-2(Te0.91Se0.09)(3) and (Bi0.26Sb0.74)(2)Te-3 nanostructured bulk samples were prepared from as-cast materials by ball milling and subsequent spark plasma sintering, yielding grain sizes of 50 nm and thermal diffusivities reduced by 60%. Structure, chemical composition, as well as electronic and phononic excitations were investigated by x-ray and electron diffraction, nuclear resonance scattering, and analytical energy-filtered transmission electron microscopy. calculations yielded point defect energies, excitation spectra, and band structure. Mechanisms limiting the thermoelectric figure of merit for Bi2Te3 nanomaterials are discussed.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|x 0
|c FUEK412
|a Grundlagen für zukünftige Informationstechnologien (FUEK412)
536 _ _ |0 G:(DE-HGF)POF2-544
|a 544 - In-house Research with PNI (POF2-544)
|c POF2-544
|f POF II
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Thermoelectric effects
653 2 0 |2 Author
|a nanostructured materials
653 2 0 |2 Author
|a x-ray diffraction (XRD)
653 2 0 |2 Author
|a analytical transmission electron microscopy (TEM)
653 2 0 |2 Author
|a lattice dynamics
653 2 0 |2 Author
|a point defects
653 2 0 |2 Author
|a density functional theory (DFT)
700 1 _ |0 P:(DE-HGF)0
|a Peranio, N.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Eibl, O.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Töllner, W.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Nielsch, K.
|b 4
700 1 _ |0 P:(DE-Juel1)VDB90858
|a Bessas, D.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)130706
|a Hermann, R.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Winkler, M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a König, J.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Böttner, H.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Pacheco, V.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Schmidt, J.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Hashibon, A.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Elsässer, C.
|b 13
773 _ _ |0 PERI:(DE-600)2032868-0
|a 10.1007/s11664-012-1997-6
|g Vol. 41, p. 1792 - 1798
|p 1792 - 1798
|q 41<1792 - 1798
|t Journal of electronic materials
|v 41
|x 0361-5235
|y 2012
856 7 _ |u http://dx.doi.org/10.1007/s11664-012-1997-6
909 C O |o oai:juser.fz-juelich.de:21696
|p VDB
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 0
913 1 _ |0 G:(DE-HGF)POF2-544
|1 G:(DE-HGF)POF2-540
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|v In-house Research with PNI
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)PGI-4-20110106
|k PGI-4
|l Streumethoden
|g PGI
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-2-20110106
|k JCNS-2
|l Streumethoden
|g JCNS
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 2
970 _ _ |a VDB:(DE-Juel1)137752
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-4-20110106
980 _ _ |a I:(DE-Juel1)JCNS-2-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)JCNS-2-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21