000021698 001__ 21698 000021698 005__ 20240529111628.0 000021698 0247_ $$2DOI$$a10.1007/s11664-011-1870-z 000021698 0247_ $$2WOS$$aWOS:000304205100086 000021698 037__ $$aPreJuSER-21698 000021698 041__ $$aeng 000021698 082__ $$a670 000021698 084__ $$2WoS$$aEngineering, Electrical & Electronic 000021698 084__ $$2WoS$$aMaterials Science, Multidisciplinary 000021698 084__ $$2WoS$$aPhysics, Applied 000021698 1001_ $$0P:(DE-HGF)0$$aAabdin, Z.$$b0 000021698 245__ $$aSb2Te3 and Bi2Te3 Thin Films Grown by Room-Temperature MBE 000021698 260__ $$aWarrendale, Pa$$bTMS$$c2012 000021698 300__ $$a1493 - 1497 000021698 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000021698 3367_ $$2DataCite$$aOutput Types/Journal article 000021698 3367_ $$00$$2EndNote$$aJournal Article 000021698 3367_ $$2BibTeX$$aARTICLE 000021698 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000021698 3367_ $$2DRIVER$$aarticle 000021698 440_0 $$03269$$aJournal of Electronic Materials$$v41$$x0361-5235$$y6 000021698 500__ $$aThe authors gratefully acknowledge financial support by the German Research Society DFG, priority programme 1386 "Nanostructured Thermoelectric Materials: Theory, Model Systems and Controlled Synthesis." R. P. H. and D. B. acknowledge the Advanced Photon Source for provision of synchrotron radiation beam time and the help of Dr. D. Robinson during data acquisition at 6-ID-D. R. P. H. acknowledges support from the Helmholtz-University Young Investigator Group "Lattice Dynamics in Emerging Functional Materials." 000021698 520__ $$aSb2Te3 and Bi2Te3 thin films were grown on SiO2 and BaF2 substrates at room temperature using molecular beam epitaxy. Metallic layers with thicknesses of 0.2 nm were alternately deposited at room temperature, and the films were subsequently annealed at 250A degrees C for 2 h. x-Ray diffraction and energy-filtered transmission electron microscopy (TEM) combined with high-accuracy energy-dispersive x-ray spectrometry revealed stoichiometric films, grain sizes of less than 500 nm, and a texture. High-quality in-plane thermoelectric properties were obtained for Sb2Te3 films at room temperature, i.e., low charge carrier density (2.6 x 10(19) cm(-3)), large thermopower (130 V K-1), large charge carrier mobility (402 cm(2) V-1 s(-1)), and resulting large power factor (29 W cm(-1) K-2). Bi2Te3 films also showed low charge carrier density (2.7 x 10(19) cm(-3)), moderate thermopower (-153 V K-1), but very low charge carrier mobility (80 cm(2) V-1 s(-1)), yielding low power factor (8 W cm(-1) K-2). The low mobilities were attributed to Bi-rich grain boundary phases identified by analytical energy-filtered TEM. 000021698 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien (FUEK412)$$cFUEK412$$x0 000021698 536__ $$0G:(DE-HGF)POF2-544$$a544 - In-house Research with PNI (POF2-544)$$cPOF2-544$$fPOF II$$x1 000021698 588__ $$aDataset connected to Web of Science 000021698 65320 $$2Author$$aThermoelectric effects 000021698 65320 $$2Author$$athin films 000021698 65320 $$2Author$$amolecular beam epitaxy (MBE) 000021698 65320 $$2Author$$ax-ray diffraction (XRD) 000021698 65320 $$2Author$$aanalytical transmission electron microscopy (TEM) 000021698 650_7 $$2WoSType$$aJ 000021698 7001_ $$0P:(DE-HGF)0$$aPeranio, N.$$b1 000021698 7001_ $$0P:(DE-HGF)0$$aWinkler, M.$$b2 000021698 7001_ $$0P:(DE-Juel1)VDB90858$$aBessas, D.$$b3$$uFZJ 000021698 7001_ $$0P:(DE-HGF)0$$aKönig, J.$$b4 000021698 7001_ $$0P:(DE-Juel1)130706$$aHermann, R.$$b5$$uFZJ 000021698 7001_ $$0P:(DE-HGF)0$$aBöttner, H.$$b6 000021698 7001_ $$0P:(DE-HGF)0$$aEibl, O.$$b7 000021698 773__ $$0PERI:(DE-600)2032868-0$$a10.1007/s11664-011-1870-z$$gVol. 41, p. 1493 - 1497$$p1493 - 1497$$q41<1493 - 1497$$tJournal of electronic materials$$v41$$x0361-5235$$y2012 000021698 8567_ $$uhttp://dx.doi.org/10.1007/s11664-011-1870-z 000021698 909CO $$ooai:juser.fz-juelich.de:21698$$pVDB 000021698 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000021698 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000021698 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000021698 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000021698 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000021698 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000021698 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000021698 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000021698 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000021698 9141_ $$y2012 000021698 9132_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$aDE-HGF$$bForschungsbereich Materie$$lIn-house research on the structure, dynamics and function of matter$$vNeutrons for Research on Condensed Matter$$x0 000021698 9131_ $$0G:(DE-HGF)POF2-544$$1G:(DE-HGF)POF2-540$$2G:(DE-HGF)POF2-500$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bStruktur der Materie$$lForschung mit Photonen, Neutronen, Ionen$$vIn-house Research with PNI$$x2 000021698 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$gPGI$$kPGI-4$$lStreumethoden$$x0 000021698 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$gJCNS$$kJCNS-2$$lStreumethoden$$x1 000021698 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2 000021698 970__ $$aVDB:(DE-Juel1)137754 000021698 980__ $$aVDB 000021698 980__ $$aConvertedRecord 000021698 980__ $$ajournal 000021698 980__ $$aI:(DE-Juel1)PGI-4-20110106 000021698 980__ $$aI:(DE-Juel1)JCNS-2-20110106 000021698 980__ $$aI:(DE-82)080009_20140620 000021698 980__ $$aUNRESTRICTED 000021698 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000021698 981__ $$aI:(DE-Juel1)JCNS-2-20110106 000021698 981__ $$aI:(DE-Juel1)VDB881