000021703 001__ 21703
000021703 005__ 20210129210806.0
000021703 0247_ $$2DOI$$a10.1016/j.ppnp.2012.01.012
000021703 0247_ $$2WOS$$aWOS:000303282200062
000021703 0247_ $$2altmetric$$aaltmetric:477043
000021703 037__ $$aPreJuSER-21703
000021703 041__ $$aeng
000021703 082__ $$a530
000021703 084__ $$2WoS$$aPhysics, Nuclear
000021703 084__ $$2WoS$$aPhysics, Particles & Fields
000021703 1001_ $$0P:(DE-HGF)0$$aBali, G.S.$$b0
000021703 245__ $$aA lattice study of the strangeness content of the nucleon
000021703 260__ $$aOxford [u.a.]$$bPergamon Press$$c2012
000021703 300__ $$a467 - 472
000021703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021703 3367_ $$2DataCite$$aOutput Types/Journal article
000021703 3367_ $$00$$2EndNote$$aJournal Article
000021703 3367_ $$2BibTeX$$aARTICLE
000021703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021703 3367_ $$2DRIVER$$aarticle
000021703 440_0 $$05138$$aProgress in Particle and Nuclear Physics$$v67$$x0146-6410$$y2
000021703 500__ $$aThis work was supported by the European Union (grant 238353, ITN STRONGnet) and by the DFG SFB/Transregio 55. S.C. is supported by the Claussen-Simon-Foundation (Stifterverband fur die Deutsche Wissenschaft), A.St. by the EU IRG grant 256594 and J.Z. by the Australian Research Council grant FT100100005. Computations were performed on the SFB/TR55 QPACE supercomputers, the BlueGene/P (JuGene) and the Nehalem cluster (JuRoPA) of the JSC (Julich), the IBM BlueGene/L at the EPCC (Edinburgh), the SGI Altix ICE machines at HLRN (Berlin/Hannover) and Regensburg's Athene HPC cluster. The Chroma software suite [24] was used extensively in this work.
000021703 520__ $$aWe determine the quark contributions to the nucleon spin Delta s, Delta u and Ad as well as their contributions to the nucleon mass, the a-terms. This is done by computing both, the quark line connected and disconnected contributions to the respective matrix elements, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n(F) = 2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a approximate to 0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon a-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized value sigma(pi N) = (38 +/- 12) MeV at the physical point and the strangeness fraction f(Ts) = sigma s/m(N) = 0.012(14)(-3)(+10) at our larger than physical sea quark mass. For the strangeness contribution to the nucleon spin we obtain Delta s ((MS)) over bar(root 7.4 GeV) = -0.020(10)(1). (C) 2012 Published by Elsevier B.V.
000021703 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000021703 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000021703 536__ $$0G:(EU-Grant)238353$$aSTRONGNET - Strong Interaction Supercomputing Training Network (238353)$$c238353$$fFP7-PEOPLE-ITN-2008$$x2
000021703 536__ $$0G:(EU-Grant)256594$$aPRECISION LATTICEQCD - Precision lattice QCD calculations (256594)$$c256594$$fFP7-PEOPLE-2009-RG$$x3
000021703 588__ $$aDataset connected to Web of Science
000021703 65320 $$2Author$$aLattice QCD
000021703 65320 $$2Author$$aNucleon structure
000021703 65320 $$2Author$$aNucleon spin
000021703 65320 $$2Author$$asigma-term
000021703 65320 $$2Author$$aStrangeness
000021703 650_7 $$2WoSType$$aJ
000021703 7001_ $$0P:(DE-HGF)0$$aCollins, S.$$b1
000021703 7001_ $$0P:(DE-HGF)0$$aGöckeler, M.$$b2
000021703 7001_ $$0P:(DE-HGF)0$$aHorsley, R.$$b3
000021703 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b4
000021703 7001_ $$0P:(DE-HGF)0$$aNobile, A.$$b5
000021703 7001_ $$0P:(DE-Juel1)144441$$aPleiter, D.$$b6$$uFZJ
000021703 7001_ $$0P:(DE-HGF)0$$aRakow, P.E.L.$$b7
000021703 7001_ $$0P:(DE-HGF)0$$aSternbeck, A.$$b8
000021703 7001_ $$0P:(DE-HGF)0$$aSchäfer, A.$$b9
000021703 7001_ $$0P:(DE-HGF)0$$aSchierholz, G.$$b10
000021703 7001_ $$0P:(DE-HGF)0$$aZanotti, J.M.$$b11
000021703 773__ $$0PERI:(DE-600)1469125-5$$a10.1016/j.ppnp.2012.01.012$$gVol. 67, p. 467 - 472$$p467 - 472$$q67<467 - 472$$tProgress in particle and nuclear physics$$v67$$x0146-6410$$y2012
000021703 8567_ $$uhttp://dx.doi.org/10.1016/j.ppnp.2012.01.012
000021703 909CO $$ooai:juser.fz-juelich.de:21703$$pec_fundedresources$$pVDB$$popenaire
000021703 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021703 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021703 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021703 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021703 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021703 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021703 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021703 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021703 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000021703 9141_ $$y2012
000021703 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000021703 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x5
000021703 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000021703 970__ $$aVDB:(DE-Juel1)137761
000021703 980__ $$aVDB
000021703 980__ $$aConvertedRecord
000021703 980__ $$ajournal
000021703 980__ $$aI:(DE-Juel1)JSC-20090406
000021703 980__ $$aUNRESTRICTED