001     21703
005     20210129210806.0
024 7 _ |2 DOI
|a 10.1016/j.ppnp.2012.01.012
024 7 _ |2 WOS
|a WOS:000303282200062
024 7 _ |a altmetric:477043
|2 altmetric
037 _ _ |a PreJuSER-21703
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Nuclear
084 _ _ |2 WoS
|a Physics, Particles & Fields
100 1 _ |0 P:(DE-HGF)0
|a Bali, G.S.
|b 0
245 _ _ |a A lattice study of the strangeness content of the nucleon
260 _ _ |a Oxford [u.a.]
|b Pergamon Press
|c 2012
300 _ _ |a 467 - 472
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5138
|a Progress in Particle and Nuclear Physics
|v 67
|x 0146-6410
|y 2
500 _ _ |a This work was supported by the European Union (grant 238353, ITN STRONGnet) and by the DFG SFB/Transregio 55. S.C. is supported by the Claussen-Simon-Foundation (Stifterverband fur die Deutsche Wissenschaft), A.St. by the EU IRG grant 256594 and J.Z. by the Australian Research Council grant FT100100005. Computations were performed on the SFB/TR55 QPACE supercomputers, the BlueGene/P (JuGene) and the Nehalem cluster (JuRoPA) of the JSC (Julich), the IBM BlueGene/L at the EPCC (Edinburgh), the SGI Altix ICE machines at HLRN (Berlin/Hannover) and Regensburg's Athene HPC cluster. The Chroma software suite [24] was used extensively in this work.
520 _ _ |a We determine the quark contributions to the nucleon spin Delta s, Delta u and Ad as well as their contributions to the nucleon mass, the a-terms. This is done by computing both, the quark line connected and disconnected contributions to the respective matrix elements, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n(F) = 2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a approximate to 0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon a-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized value sigma(pi N) = (38 +/- 12) MeV at the physical point and the strangeness fraction f(Ts) = sigma s/m(N) = 0.012(14)(-3)(+10) at our larger than physical sea quark mass. For the strangeness contribution to the nucleon spin we obtain Delta s ((MS)) over bar(root 7.4 GeV) = -0.020(10)(1). (C) 2012 Published by Elsevier B.V.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
536 _ _ |a STRONGNET - Strong Interaction Supercomputing Training Network (238353)
|0 G:(EU-Grant)238353
|c 238353
|x 2
|f FP7-PEOPLE-ITN-2008
536 _ _ |a PRECISION LATTICEQCD - Precision lattice QCD calculations (256594)
|0 G:(EU-Grant)256594
|c 256594
|x 3
|f FP7-PEOPLE-2009-RG
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Lattice QCD
653 2 0 |2 Author
|a Nucleon structure
653 2 0 |2 Author
|a Nucleon spin
653 2 0 |2 Author
|a sigma-term
653 2 0 |2 Author
|a Strangeness
700 1 _ |0 P:(DE-HGF)0
|a Collins, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Göckeler, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Horsley, R.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Nakamura, Y.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Nobile, A.
|b 5
700 1 _ |0 P:(DE-Juel1)144441
|a Pleiter, D.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Rakow, P.E.L.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Sternbeck, A.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Schäfer, A.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Schierholz, G.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Zanotti, J.M.
|b 11
773 _ _ |0 PERI:(DE-600)1469125-5
|a 10.1016/j.ppnp.2012.01.012
|g Vol. 67, p. 467 - 472
|p 467 - 472
|q 67<467 - 472
|t Progress in particle and nuclear physics
|v 67
|x 0146-6410
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.ppnp.2012.01.012
909 C O |o oai:juser.fz-juelich.de:21703
|p openaire
|p VDB
|p ec_fundedresources
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 5
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)137761
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21