001 | 21703 | ||
005 | 20210129210806.0 | ||
024 | 7 | _ | |2 DOI |a 10.1016/j.ppnp.2012.01.012 |
024 | 7 | _ | |2 WOS |a WOS:000303282200062 |
024 | 7 | _ | |a altmetric:477043 |2 altmetric |
037 | _ | _ | |a PreJuSER-21703 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Nuclear |
084 | _ | _ | |2 WoS |a Physics, Particles & Fields |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Bali, G.S. |b 0 |
245 | _ | _ | |a A lattice study of the strangeness content of the nucleon |
260 | _ | _ | |a Oxford [u.a.] |b Pergamon Press |c 2012 |
300 | _ | _ | |a 467 - 472 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 5138 |a Progress in Particle and Nuclear Physics |v 67 |x 0146-6410 |y 2 |
500 | _ | _ | |a This work was supported by the European Union (grant 238353, ITN STRONGnet) and by the DFG SFB/Transregio 55. S.C. is supported by the Claussen-Simon-Foundation (Stifterverband fur die Deutsche Wissenschaft), A.St. by the EU IRG grant 256594 and J.Z. by the Australian Research Council grant FT100100005. Computations were performed on the SFB/TR55 QPACE supercomputers, the BlueGene/P (JuGene) and the Nehalem cluster (JuRoPA) of the JSC (Julich), the IBM BlueGene/L at the EPCC (Edinburgh), the SGI Altix ICE machines at HLRN (Berlin/Hannover) and Regensburg's Athene HPC cluster. The Chroma software suite [24] was used extensively in this work. |
520 | _ | _ | |a We determine the quark contributions to the nucleon spin Delta s, Delta u and Ad as well as their contributions to the nucleon mass, the a-terms. This is done by computing both, the quark line connected and disconnected contributions to the respective matrix elements, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n(F) = 2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing a approximate to 0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon a-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized value sigma(pi N) = (38 +/- 12) MeV at the physical point and the strangeness fraction f(Ts) = sigma s/m(N) = 0.012(14)(-3)(+10) at our larger than physical sea quark mass. For the strangeness contribution to the nucleon spin we obtain Delta s ((MS)) over bar(root 7.4 GeV) = -0.020(10)(1). (C) 2012 Published by Elsevier B.V. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK411 |2 G:(DE-HGF) |x 0 |c FUEK411 |a Scientific Computing (FUEK411) |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 1 |f POF II |
536 | _ | _ | |a STRONGNET - Strong Interaction Supercomputing Training Network (238353) |0 G:(EU-Grant)238353 |c 238353 |x 2 |f FP7-PEOPLE-ITN-2008 |
536 | _ | _ | |a PRECISION LATTICEQCD - Precision lattice QCD calculations (256594) |0 G:(EU-Grant)256594 |c 256594 |x 3 |f FP7-PEOPLE-2009-RG |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a Lattice QCD |
653 | 2 | 0 | |2 Author |a Nucleon structure |
653 | 2 | 0 | |2 Author |a Nucleon spin |
653 | 2 | 0 | |2 Author |a sigma-term |
653 | 2 | 0 | |2 Author |a Strangeness |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Collins, S. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Göckeler, M. |b 2 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Horsley, R. |b 3 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Nakamura, Y. |b 4 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Nobile, A. |b 5 |
700 | 1 | _ | |0 P:(DE-Juel1)144441 |a Pleiter, D. |b 6 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Rakow, P.E.L. |b 7 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Sternbeck, A. |b 8 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schäfer, A. |b 9 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schierholz, G. |b 10 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Zanotti, J.M. |b 11 |
773 | _ | _ | |0 PERI:(DE-600)1469125-5 |a 10.1016/j.ppnp.2012.01.012 |g Vol. 67, p. 467 - 472 |p 467 - 472 |q 67<467 - 472 |t Progress in particle and nuclear physics |v 67 |x 0146-6410 |y 2012 |
856 | 7 | _ | |u http://dx.doi.org/10.1016/j.ppnp.2012.01.012 |
909 | C | O | |o oai:juser.fz-juelich.de:21703 |p openaire |p VDB |p ec_fundedresources |
913 | 2 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-411 |1 G:(DE-HGF)POF2-410 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |v Computational Science and Mathematical Methods |x 5 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1040 |2 StatID |a DBCoverage |b Zoological Record |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |g JSC |k JSC |l Jülich Supercomputing Centre |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)137761 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|