001     21704
005     20210129210806.0
024 7 _ |a pmid:22713875
|2 pmid
024 7 _ |a 10.1088/0953-8984/24/30/305004
|2 DOI
024 7 _ |a WOS:000306405600004
|2 WOS
024 7 _ |a altmetric:190971
|2 altmetric
024 7 _ |a 2128/23201
|2 Handle
037 _ _ |a PreJuSER-21704
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Fan, X.F.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Interaction between graphene and the surface of SiO2
260 _ _ |a Bristol
|b IOP Publ.
|c 2012
300 _ _ |a 305004
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Physics: Condensed Matter
|x 0953-8984
|0 3703
|y 30
|v 24
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The interaction between graphene and a SiO(2) surface has been analyzed with first-principles DFT calculations by constructing the different configurations based on α-quartz and cristobalite structures. The fact that single-layer graphene can stay stably on a SiO(2) surface is explained based on a general consideration of the configuration structures of the SiO(2) surface. It is found that the oxygen defect in a SiO(2) surface can shift the Fermi level of graphene down which opens up the mechanism of the hole-doping effect of graphene adsorbed on a SiO(2) surface observed in a lot of experiments.
536 _ _ |2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 7 |a J
|2 WoSType
700 1 _ |a Zheng, W.T.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Chihaia, V.
|b 2
|u FZJ
|0 P:(DE-Juel1)144509
700 1 _ |a Shen, Z.X.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Kuo, J.-L.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0953-8984/24/30/305004
|g Vol. 24, p. 305004
|p 305004
|q 24<305004
|0 PERI:(DE-600)1472968-4
|t Journal of physics / Condensed matter
|v 24
|y 2012
|x 0953-8984
856 7 _ |u http://dx.doi.org/10.1088/0953-8984/24/30/305004
856 4 _ |u https://juser.fz-juelich.de/record/21704/files/1107.3001.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/21704/files/1107.3001.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:21704
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)137762
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21