000021747 001__ 21747
000021747 005__ 20200702121621.0
000021747 0247_ $$2DOI$$a10.1109/TGRS.2011.2170078
000021747 0247_ $$2WOS$$aWOS:000303205400014
000021747 037__ $$aPreJuSER-21747
000021747 041__ $$aeng
000021747 082__ $$a550
000021747 084__ $$2WoS$$aGeochemistry & Geophysics
000021747 084__ $$2WoS$$aEngineering, Electrical & Electronic
000021747 084__ $$2WoS$$aRemote Sensing
000021747 1001_ $$0P:(DE-HGF)0$$aMeles, G.A.$$b0
000021747 245__ $$aGPR Full Waveform Sensitivity and Resolution Analysis using an FDTD Adjoint Method
000021747 260__ $$aNew York, NY$$bIEEE$$c2012
000021747 300__ $$a1881 - 1896
000021747 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021747 3367_ $$2DataCite$$aOutput Types/Journal article
000021747 3367_ $$00$$2EndNote$$aJournal Article
000021747 3367_ $$2BibTeX$$aARTICLE
000021747 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021747 3367_ $$2DRIVER$$aarticle
000021747 440_0 $$017961$$aIEEE Transactions on Geoscience and Remote Sensing$$v50$$x0196-2892$$y5
000021747 500__ $$3POF3_Assignment on 2016-02-29
000021747 500__ $$aThis work was supported in part by the Swiss Federal Institute of Technology (ETH) Zurich and in part by a grant from the Swiss National Science Foundation.
000021747 520__ $$aRadar tomography is a useful technique for mapping the permittivity and conductivity distributions in the shallow subsurface. By exploiting the full radar waveforms, it is possible to improve resolution and, thus, image subwavelength features not resolvable using ray-based approaches. Usually, mere convergence in the data space is the only criterion used to appraise the goodness of a final result, possibly limiting the reliability of the inversion. A better indication of the correctness of an inverted model and its various parts could be obtained by means of a formal model resolution and information content analysis. We present a novel method for computing the sensitivity functions (Jacobian matrix) based on a time-domain adjoint method. Because the new scheme only computes the sensitivity values for the transmitter and receiver combinations that are used, it reduces the number of forward runs with respect to standard brute-force or other virtual-source schemes. The procedure has been implemented by using a standard finite-difference time-domain modeling method. A comparison between cumulative sensitivity (column sum of absolute values of the Jacobian) images, which is sometimes used in geoelectrical studies as a proxy for resolution in practical cases, and formal model resolution images is also presented. We show that the cumulative sensitivity supplies some valuable information about the image, but when possible, formal resolution analyses should be performed. The eigenvalue spectrum of the pseudoHessian matrix provides a measure of the information content of an experiment and shows the extent of the unresolved model space.
000021747 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000021747 588__ $$aDataset connected to Web of Science
000021747 650_7 $$2WoSType$$aJ
000021747 65320 $$2Author$$aGPR
000021747 65320 $$2Author$$amodel resolution
000021747 65320 $$2Author$$asensitivity analysis
000021747 7001_ $$0P:(DE-HGF)0$$aGreenhalgh, S.A.$$b1
000021747 7001_ $$0P:(DE-HGF)0$$aGreen, A.G.$$b2
000021747 7001_ $$0P:(DE-HGF)0$$aMaurer, H.$$b3
000021747 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, J.$$b4$$uFZJ
000021747 773__ $$0PERI:(DE-600)2027520-1$$a10.1109/TGRS.2011.2170078$$gVol. 50, p. 1881 - 1896$$p1881 - 1896$$q50<1881 - 1896$$tIEEE transactions on geoscience and remote sensing$$v50$$x0196-2892$$y2012
000021747 8567_ $$uhttp://dx.doi.org/10.1109/TGRS.2011.2170078
000021747 909CO $$ooai:juser.fz-juelich.de:21747$$pVDB$$pVDB:Earth_Environment
000021747 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000021747 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000021747 9141_ $$y2012
000021747 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021747 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021747 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021747 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021747 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021747 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021747 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021747 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021747 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000021747 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000021747 970__ $$aVDB:(DE-Juel1)137835
000021747 980__ $$aVDB
000021747 980__ $$aConvertedRecord
000021747 980__ $$ajournal
000021747 980__ $$aI:(DE-Juel1)IBG-3-20101118
000021747 980__ $$aUNRESTRICTED