001     21886
005     20210129210813.0
024 7 _ |2 pmid
|a pmid:22645298
024 7 _ |2 DOI
|a 10.2967/jnumed.111.098590
024 7 _ |2 WOS
|a WOS:000306164600020
024 7 _ |a altmetric:770359
|2 altmetric
037 _ _ |a PreJuSER-21886
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Galldiks, N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB73298
245 _ _ |a Assessment of treatment response in patients with glioblastoma using [18F]Fluoroethyl-L-Tyrosine PET in comparison to MRI
260 _ _ |a New York, NY
|b Society of Nuclear Medicine
|c 2012
264 _ 1 |3 online
|2 Crossref
|b Society of Nuclear Medicine
|c 2012-05-29
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2012-07-01
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2012-07-01
300 _ _ |a 1048-1057
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Nuclear Medicine
|x 0097-9058
|0 3621
|y 53
|v 7
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The assessment of treatment response in glioblastoma is difficult with MRI because reactive blood-brain barrier alterations with contrast enhancement can mimic tumor progression. In this study, we investigated the predictive value of PET using O-(2-(18)F-fluoroethyl)-l-tyrosine ((18)F-FET PET) during treatment.In a prospective study, 25 patients with glioblastoma were investigated by MRI and (18)F-FET PET after surgery (MRI-/FET-1), early (7-10 d) after completion of radiochemotherapy with temozolomide (RCX) (MRI-/FET-2), and 6-8 wk later (MRI-/FET-3). Maximum and mean tumor-to-brain ratios (TBR(max) and TBR(mean), respectively) were determined by region-of-interest analyses. Furthermore, gadolinium contrast-enhancement volumes on MRI (Gd-volume) and tumor volumes in (18)F-FET PET images with a tumor-to-brain ratio greater than 1.6 (T(vol 1.6)) were calculated using threshold-based volume-of-interest analyses. The patients were grouped into responders and nonresponders according to the changes of these parameters at different cutoffs, and the influence on progression-free survival and overall survival was tested using univariate and multivariate survival analyses and by receiver-operating-characteristic analyses.Early after completion of RCX, a decrease of both TBR(max) and TBR(mean) was a highly significant and independent statistical predictor for progression-free survival and overall survival. Receiver-operating-characteristic analysis showed that a decrease of the TBR(max) between FET-1 and FET-2 of more than 20% predicted poor survival, with a sensitivity of 83% and a specificity of 67% (area under the curve, 0.75). Six to eight weeks later, the predictive value of TBR(max) and TBR(mean) was less significant, but an association between a decrease of T(vol 1.6) and PFS was noted. In contrast, Gd-volume changes had no significant predictive value for survival.In contrast to Gd-volumes on MRI, changes in (18)F-FET PET may be a valuable parameter to assess treatment response in glioblastoma and to predict survival time.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89572 - (Dys-)function and Plasticity (POF2-89572)
|0 G:(DE-HGF)POF2-89572
|c POF2-89572
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Aged
650 _ 2 |2 MeSH
|a Brain Neoplasms: radionuclide imaging
650 _ 2 |2 MeSH
|a Brain Neoplasms: therapy
650 _ 2 |2 MeSH
|a Chemoradiotherapy
650 _ 2 |2 MeSH
|a Contrast Media
650 _ 2 |2 MeSH
|a Disease Progression
650 _ 2 |2 MeSH
|a Disease-Free Survival
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Gadolinium
650 _ 2 |2 MeSH
|a Glioblastoma: radionuclide imaging
650 _ 2 |2 MeSH
|a Glioblastoma: therapy
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Kaplan-Meier Estimate
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Neurosurgical Procedures
650 _ 2 |2 MeSH
|a Positron-Emission Tomography
650 _ 2 |2 MeSH
|a Prognosis
650 _ 2 |2 MeSH
|a Proportional Hazards Models
650 _ 2 |2 MeSH
|a Prospective Studies
650 _ 2 |2 MeSH
|a Radiopharmaceuticals: diagnostic use
650 _ 2 |2 MeSH
|a Survival Analysis
650 _ 2 |2 MeSH
|a Treatment Outcome
650 _ 2 |2 MeSH
|a Tyrosine: analogs & derivatives
650 _ 2 |2 MeSH
|a Tyrosine: diagnostic use
650 _ 7 |0 0
|2 NLM Chemicals
|a (18F)fluoroethyltyrosine
650 _ 7 |0 0
|2 NLM Chemicals
|a Contrast Media
650 _ 7 |0 0
|2 NLM Chemicals
|a Radiopharmaceuticals
650 _ 7 |0 55520-40-6
|2 NLM Chemicals
|a Tyrosine
650 _ 7 |0 7440-54-2
|2 NLM Chemicals
|a Gadolinium
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a glioblastoma
653 2 0 |2 Author
|a assessment of treatment response
653 2 0 |2 Author
|a prognosis
653 2 0 |2 Author
|a amino acid PET
653 2 0 |2 Author
|a F-18-fluoroethyl-L-tyrosine (F-18-FET)
700 1 _ |a Langen, K.J.
|b 1
|u FZJ
|0 P:(DE-Juel1)131777
700 1 _ |a Holy, R.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Pinkawa, M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Stoffels, G.
|b 4
|u FZJ
|0 P:(DE-Juel1)131627
700 1 _ |a Nolte, K.W.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Kaiser, H.J.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Filss, C.P.
|b 7
|u FZJ
|0 P:(DE-Juel1)VDB101468
700 1 _ |a Fink, G.R.
|b 8
|u FZJ
|0 P:(DE-Juel1)131720
700 1 _ |a Coenen, H.H.
|b 9
|u FZJ
|0 P:(DE-Juel1)131816
700 1 _ |a Eble, M.J.
|b 10
|0 P:(DE-HGF)0
700 1 _ |a Piroth, M.D.
|b 11
|0 P:(DE-HGF)0
773 1 8 |a 10.2967/jnumed.111.098590
|b : Society of Nuclear Medicine, 2012-05-29
|n 7
|p 1048-1057
|3 journal-article
|2 Crossref
|t Journal of Nuclear Medicine
|v 53
|y 2012
|x 0161-5505
773 _ _ |a 10.2967/jnumed.111.098590
|g Vol. 53
|p 1048-1057
|n 7
|q 53<7
|0 PERI:(DE-600)2040222-3
|t Journal of nuclear medicine
|v 53
|y 2012
|x 0161-5505
856 7 _ |u http://dx.doi.org/10.2967/jnumed.111.098590
909 C O |o oai:juser.fz-juelich.de:21886
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89572
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
920 1 _ |k INM-3
|l Kognitive Neurowissenschaften
|g INM
|0 I:(DE-Juel1)INM-3-20090406
|x 0
920 1 _ |k INM-4
|l Physik der Medizinischen Bildgebung
|g INM
|0 I:(DE-Juel1)INM-4-20090406
|x 1
920 1 _ |k INM-5
|l Nuklearchemie
|g INM
|0 I:(DE-Juel1)INM-5-20090406
|x 2
970 _ _ |a VDB:(DE-Juel1)138042
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-4-20090406
981 _ _ |a I:(DE-Juel1)INM-5-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21