000021969 001__ 21969
000021969 005__ 20180210131725.0
000021969 0247_ $$2pmid$$apmid:22773268
000021969 0247_ $$2DOI$$a10.1088/0953-8984/24/29/293201
000021969 0247_ $$2WOS$$aWOS:000306270700001
000021969 037__ $$aPreJuSER-21969
000021969 041__ $$aeng
000021969 082__ $$a530
000021969 084__ $$2WoS$$aPhysics, Condensed Matter
000021969 1001_ $$0P:(DE-Juel1)VDB418$$aFriedrich, C.$$b0$$uFZJ
000021969 245__ $$aHybrid functionals and GW approximation in the FLAPW method
000021969 260__ $$aBristol$$bIOP Publ.$$c2012
000021969 300__ $$a293201
000021969 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021969 3367_ $$2DataCite$$aOutput Types/Journal article
000021969 3367_ $$00$$2EndNote$$aJournal Article
000021969 3367_ $$2BibTeX$$aARTICLE
000021969 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021969 3367_ $$2DRIVER$$aarticle
000021969 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v24$$x0953-8984$$y29
000021969 500__ $$3POF3_Assignment on 2016-02-29
000021969 500__ $$aWe gratefully acknowledge valuable discussions with Marjana Lezaic, Gustav Bihlmayer, Mathias C. Muller, and Georg Kresse, as well as financial funding by the Young Investigators Group Programme of the Helmholtz Association (Computational Nanoferronics Laboratory', contract VH-NG-409) and by the Deutsche Forschungsgemeinschaft through the Priority Program 1145.
000021969 520__ $$aWe present recent advances in numerical implementations of hybrid functionals and the GW approximation within the full-potential linearized augmented-plane-wave (FLAPW) method. The former is an approximation for the exchange–correlation contribution to the total energy functional in density-functional theory, and the latter is an approximation for the electronic self-energy in the framework of many-body perturbation theory. All implementations employ the mixed product basis, which has evolved into a versatile basis for the products of wave functions, describing the incoming and outgoing states of an electron that is scattered by interacting with another electron. It can thus be used for representing the nonlocal potential in hybrid functionals as well as the screened interaction and related quantities in GW calculations. In particular, the six-dimensional space integrals of the Hamiltonian exchange matrix elements (and exchange self-energy) decompose into sums over vector–matrix–vector products, which can be evaluated easily. The correlation part of the GW self-energy, which contains a time or frequency dependence, is calculated on the imaginary frequency axis with a subsequent analytic continuation to the real axis or, alternatively, by a direct frequency convolution of the Green function G and the dynamically screened Coulomb interaction W along a contour integration path that avoids the poles of the Green function. Hybrid-functional and GW calculations are notoriously computationally expensive. We present a number of tricks that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k = 0, and a nested density and density-matrix convergence scheme for hybrid-functional calculations. We show CPU timings for prototype semiconductors and illustrative results for GdN and ZnO.
000021969 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000021969 536__ $$0G:(DE-HGF)HGF-YoungInvestigatorsGroup$$aHelmholtz Young Investigators Group (HGF-YoungInvestigatorsGroup)$$cHGF-YoungInvestigatorsGroup$$x1
000021969 588__ $$aDataset connected to Web of Science, Pubmed
000021969 650_7 $$2WoSType$$aJ
000021969 7001_ $$0P:(DE-Juel1)130539$$aBetzinger, M.$$b1$$uFZJ
000021969 7001_ $$0P:(DE-Juel1)VDB85291$$aSchlipf, M.$$b2$$uFZJ
000021969 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b3$$uFZJ
000021969 7001_ $$0P:(DE-HGF)0$$aSchindlmayr, A.$$b4
000021969 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/24/29/293201$$gVol. 24, p. 293201$$p293201$$q24<293201$$tJournal of physics / Condensed matter$$v24$$x0953-8984$$y2012
000021969 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/24/29/293201
000021969 909CO $$ooai:juser.fz-juelich.de:21969$$pVDB
000021969 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021969 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021969 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021969 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021969 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021969 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021969 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021969 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021969 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021969 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000021969 9141_ $$y2012
000021969 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000021969 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000021969 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000021969 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000021969 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000021969 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000021969 970__ $$aVDB:(DE-Juel1)138143
000021969 980__ $$aVDB
000021969 980__ $$aConvertedRecord
000021969 980__ $$ajournal
000021969 980__ $$aI:(DE-Juel1)IAS-1-20090406
000021969 980__ $$aI:(DE-Juel1)PGI-1-20110106
000021969 980__ $$aI:(DE-82)080009_20140620
000021969 980__ $$aI:(DE-Juel1)VDB1045
000021969 980__ $$aUNRESTRICTED
000021969 981__ $$aI:(DE-Juel1)PGI-1-20110106
000021969 981__ $$aI:(DE-Juel1)VDB1045
000021969 981__ $$aI:(DE-Juel1)VDB881