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Topological phases of Bi(111) bilayer in an external exchange field
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Using first-principles methods, we investigate topological phase transitions as a function of exchange field in a

Bi(111) bilayer. Evaluation of the spin Chern number for different magnitudes of the exchange field reveals that

when the time-reversal symmetry is broken by a small exchange field, the system enters the time-reversal broken

topological insulator phase, introduced by Yang et al. [Phys. Rev. Lett. 107, 066602 (2011)]. After a metallic

phase in the intermediate region, the quantum anomalous Hall phase with a nonzero Chern number emerges at

a sufficiently large exchange field. We analyze the phase diagram from the viewpoint of the evolution of the

electronic structure, edge states, and transport properties and demonstrate that different topological phases can

be distinguished by the spin polarization of the edge states as well as spin or charge transverse conductivity.
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I. INTRODUCTION

Topological insulators (TIs) have drawn quite intensive
attention recently owing to the gapless surface/edge states,
topologically protected against perturbations which do not
close the bulk gap.1,2 Similar to graphene,3 exciting physical
properties are expected if the TI surface/edge states are made
gapped, resulting in, e.g., a half-quantized surface Hall effect,4

topological magnetoelectric effects,5,6 and Majorana zero
states.7 It is suggested that such effects can be triggered via
the proximity effect of TIs to magnetically ordered materials
or superconductors, in which case new terms which impose
or break certain symmetries are introduced into the effective
Hamiltonian.

One particularly interesting situation arises if the time-
reversal symmetry T in a TI is broken via a controlled
perturbation. The definition of the Z2 topological invariant,
used to classify two-dimensional (2D) insulators into ordinary
insulators and TIs, hinges on the presence of the time-reversal
symmetry in the system.8 It still remains an open question
of how to generalize the Z2 topological invariant when T is
broken. In such a case, it is suggested9 that it is plausible to
use the so-called spin Chern number:10

Cs = 1
2
(C+ − C−), (1)

where C+ and C− are the Chern numbers for the spin “up” and
“down” manifolds of the occupied states. Since the spin-orbit
coupling (SOC) in general induces spin mixing, the spin Chern
number is well defined only when the system exhibits a gap
in the spectrum of σz in addition to being a band insulator. In
this case Cs proves to be equivalent to the Z2 number when
time-reversal symmetry is present.11 For models of TIs10 and
graphene,9 the spin Chern number picture proved to be valid,
while a more detailed analysis of this concept in real materials
investigated from first principles is still lacking.

Owing to T symmetry, the surface/edge states of TIs are
spin degenerate, making it hard to manipulate and exploit
their transport properties in experiments based on magnetic
detection. While the quantum Hall effect usually requires a
very large magnetic field to emerge, in this sense, the quantum
anomalous Hall (QAH) effect in ferromagnets would be much
more suited for future spintronics. The QAH effect, which has
attracted a lot of attention recently but so far has not been

verified experimentally, occurs in 2D Chern insulators12 with
broken T symmetry, exhibiting overall spin-polarized edge
states carrying a quantized electric charge. Up to now, it has
been believed that TIs can be turned into Chern insulators
via magnetic doping,13,14 but it still remains an experimentally
unsolved problem despite recent advances in this direction.15,16

In this light, it is necessary to explore how tunable 2D TIs
are under T -broken perturbations, in particular, exchange
interactions.

Bismuth is the heaviest atom with an effectively stable
isotope,17 and strong spin-orbit coupling makes it an important
ingredient of the newly discovered TIs such as Bi2Se3

18 and
Bi1−xSbx .8 Ultrathin Bi(111) films, which can be produced
experimentally on different substrates,19,20 are also predicted
to be 2D TIs.21–23 In our study we take the Bi(111) bilayer
as a representative of the latter class of TIs. In this work, we
investigate the topological phase transitions in a 2D TI, the
Bi(111) bilayer,21 in an external exchange field using first-
principles methods. We found that at small exchange fields
the bilayer is in the time-reversal broken topological insulator
phase, which can be characterized by nontrivial values of spin
Chern numbers, transverse spin Hall conductivity, and spin
polarization of the edge states. Increasing the magnitude of
the exchange field further drives the system first into a metal
and then into a QAH phase. Detailed analysis of the electronic
structures reveals that spin mixing is important for closing the
bulk gap and Chern number exchange between valence and
conduction bands. Finally, we analyze the spin polarization
of the metallic edge states in different phases, show that its
sign can be controlled by the strength of the exchange field,
and prove that its magnitude is large enough to be observed in
scanning tunneling microscopy experiments.

II. METHOD

In a Bi(111) bilayer two layers of Bi atoms form a
honeycomb lattice when projected onto the plane of the film.
The relaxed bulk in-plane lattice constant and the distance
between the two layers were 4.52 and 1.67 Å, respectively
(see also Fig. 4). Our theoretical investigations are based
on density functional theory.24 We apply the local-density
approximation25 to the exchange-correlation potential and use
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the full-potential linearized augmented-plane-wave method
(FLAPW) as implemented in the FLEUR code.26 The self-
consistent calculations with SOC were carried out with a
cutoff parameter kmax of 3.8 bohr−1 and 50 k points in
the full two-dimensional Brillouin zone (BZ). A muffin-tin
radius of 2.5 Bohr was used. The band structure of the
system with SOC is presented in Fig. 2(f). The Wannier
function technique was used on top of self-consistent DFT
calculations to derive an accurate tight-binding Hamiltonian
for the system.27–29 Moreover, we have constructed the matrix
elements 〈ψmk | σα | ψnk〉 of the Pauli matrices σα (α = x,y,z),
where ψnk are the occupied Bloch wave functions. These
matrices were evaluated from the DFT calculations and
transformed into the real-space representation in terms of
maximally localized Wannier functions (MLWFs).29 This
allowed us to take into account an exchange field applied
perpendicularly to the surface of the bilayer by adding a σz · B

term on top of the original Hamiltonian and provided an ability
to accurately evaluate spin polarization Pα (see the caption
of Fig. 4 for details). In general, applying an exchange field
lifts the spin degeneracy, where spin-up (spin-down) states
get higher (lower) in energy spectra, and the difference of
the occupation of spin-up and spin-down leads to the spin
polarization Pα , which can be positive (negative) along the
direction of exchange fields. In Figs. 2(a)–2(e), 2(k)–2(o),
and 4, spin-up (minority) and spin-down (majority) states are
indicated in red and blue, respectively.

For a band insulator the transverse anomalous Hall conduc-
tivity (AHC) is e2

h
times the conventional integer (first) Chern

number, where30

C = C+ + C− = −
1

2π

occ
∑

n=1

∫

d2k �xy
n (k), (2)

in which the summation goes over all occupied states and
�n(k) is the Berry curvature of the nth band, given by

�xy
n (k) = −2Im

〈

∂unk

∂kx

∣

∣

∣

∣

∂unk

∂ky

〉

= −2Im
∑

m�=n

〈unk | v̂x | umk〉 〈umk | v̂y | unk〉

(ǫnk − ǫmk)2
, (3)

where unk is the lattice-periodic part of ψnk with energy
eigenvalues ǫnk and v̂ν (ν = x,y) is the velocity operator. To
evaluate the spin Hall conductivity, we have replaced v̂x with
the spin-velocity operator ŝz

x = {v̂x,σz} in Eq. (3).
To calculate the spin Chern number, we followed the

procedure of Ref. 10. First, the σz matrix for the occupied
states 〈ψmk | σz | ψnk〉 (m, n are the band indices of occupied
states at each k) is constructed and diagonalized. Note that due
to the spin-flip part of the spin-orbit coupling,31 the eigenvalues
of the σz matrix are not necessarily ±1. Then, using the spin-up
or spin-down eigenvectors |φ±〉 of the σz matrix, the occupied
states are projected into the spin-up and spin-down manifolds
ψ± = 〈φ±(k) | ψ(k)〉, where |ψ(k)〉 denotes the eigenvector of
the occupied states. Finally, the spin Chern number is evaluated
by integration of the Berry curvature for each manifold where
the derivatives of the wave functions ψ± with respect to k
are obtained using the finite difference methods.32 The spin
Chern number is well defined only if the spectrum of σz is

gapped.10 In our calculations, we observed that in the range of
exchange field considered (0 eV � B � 1 eV) the spectrum
of σz remains finite, which justifies the usage of spin Chern
numbers in this work.

III. CHERN NUMBERS AND THE PHASE DIAGRAM

Here, we calculate the Chern numbers and analyze the
topological phases of the Bi(111) bilayer as a function of
the externally added exchange field B, presenting the phase
diagram, calculated band gap, and AHC in Fig. 1. When
B = 0, the system is a 2D TI with a Z2 number of 1
(nontrivial). The Chern numbers for the spin-up (minority) and
spin-down (majority) manifolds are C± = ∓1, respectively,
leading to a spin Chern number Cs = −1 [cf. Eq. (1)], in
agreement with previous calculations.22 In this case, the spin
Chern number is equivalent to the Z2 number. Introducing
and increasing the exchange field breaks the T symmetry
and causes an exchange splitting between the spin-up and
spin-down valence and conduction bands, bringing thus the
minority valence bands towards majority conduction bands33

[Fig. 2(b)]. A further increase of the exchange field leads to
a closure of the gap at B = 0.31 eV [Fig. 2(c)]. As evident
from Figs. 2(a)–2(c), until the bulk gap is closed, the original
inverted band structure at the Ŵ point remains topologically
nontrivial. This is confirmed by calculating the spin Chern
number C± = ∓1 for 0 � B � 0.31 eV, identifying the
topological phase of the Bi(111) bilayer in this range of the
exchange field as the T -broken (TRB) TI phase (c.f. Fig. 1),
analogous to that considered in graphene.9

To verify that the T -broken phase could display nontrivial
topological transport properties, we calculate the transverse
spin Hall conductivity (SHC) as a function of the spin-orbit
strength in the system λ and present the results in Fig. 3.
Consider first the bilayer at B = 0. At small SOC strength
the system is in a trivial insulator phase, which can be
characterized with a zero SHC. Upon increasing λ, the
bilayer first goes through a metallic phase, and at around
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FIG. 1. (Color online) Phase diagram of the Bi(111) bilayer with

respect to the exchange field B. Blue squares (red circles) mark the

band gap (anomalous Hall conductivity) as a function of B. Regions

of different topological phases, namely, T -conserved TI (TRS TI),

T -broken TI (TRB TI), metal, and Chern insulator (QAH) are shaded

differently and labeled accordingly.
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FIG. 2. (Color online) Electronic structure of Bi(111) bilayer in an external exchange field perpendicular to the surface. (a)–(e) display the

2D bulk band structure for an exchange field of 0.0, 0.15, 0.35, 0.5, and 0.8 eV (indicated at the top), respectively. Red (blue) stands for positive

(negative) spin polarization along the field of the states in arbitrary units. The band structures are plotted along the K-Ŵ-K ′ path in the vicinity

of the Ŵ point. In (a) the spin-up states are shifted by 10 meV upwards in energy to make the degeneracy of the states more visible. In (f) the 2D

bulk band structure of the Bi(111) bilayer is displayed. Each band is doubly degenerate. (g)–(j) display the distribution of the Berry curvature

of occupied states in the BZ (to a minus sign) with the exchange field marked on the top. Blue (red) indicates positive (negative) values of the

Berry curvature (in a.u.2). The evolution of the band structure of an 80-atom wide zigzag ribbon is shown in (k)–(o). Edge states are colored

with the expectation value of the σz, rendered in blue and red for negative and positive values, respectively. The size of the points indicates the

weight from atoms located on the upper edge of the ribbon. The gray shaded regions denote the projected 2D bulk band structure from the 2D

BZ onto the 1D k vector of the ribbon. In (k) the spin-up states are shifted by 10 meV upwards in energy to make the degeneracy of the states

more visible. Horizontal dotted lines in (a)–(e) and (k)–(o) indicate the constant energies (chosen to be in the bulk gap in insulating phases) for

which the spin polarization is analyzed as shown in Fig. 4.

70% (λ = 0.7) of the SOC strength of Bi atoms a transition
to the TI phase with a SOC-driven band inversion occurs,
which is accompanied by a nonzero SHC of the magnitude
of around −0.7 e

4π
.22 The deviation from the quantized value

of − e
4π

is due to the nonvanishing spin-nonconserving part
of the spin-orbit interaction: artificially switching it off in our
calculations,31 we indeed acquire a quantized value of − e

4π

for the SHC (dashed line in Fig. 3), in accordance with the
original scenario proposed first for HgTe/(Hg,Cd)Te quantum
spin Hall heterostructures.34–36 By looking at the SHC for
the Bi bilayer at B = 0.15 eV, we observe an almost identical
behavior to that without the field, with modifications only in the
boundaries of the metallic region, SHC in the metallic regime,
and a slight difference in the value of the SHC at large λ.
Again, by neglecting the spin-nonconserving part of the SOC,
we restore a quantized value of − e

4π
for the SHC in the TRB

TI phase, which clearly manifests a topologically nontrivial
phase, as far as the topological transport is concerned. Note
that for both phases, TI and TRB TI, the transverse charge
conductivity in exactly zero when λ lies outside of the metallic

region. The ability to characterize the T -broken TI phase by
an experimentally observable nonzero spin Hall conductivity
could be particularly important for distinguishing this phase
from a trivial insulator since, as we shall see in the next section,
the topological protection of the edge states in the system for
B �= 0 is lifted.

Returning now to the phase diagram in Fig. 1, we observe
that the size of the band gap decreases linearly as the exchange
field is increased, and for B in between 0.31 and 0.42 eV the
bulk gap is closed with the Bi(111) bilayer in the metallic
phase [see Fig. 1]. However, increasing the exchange field
further reopens the gap, which results in the occurrence of
a topologically nontrivial phase. For B � 0.42 eV the spin
Chern number of the occupied majority states reverses sign,
leading to a zero spin Chern number Cs , while the Chern
number C acquires a value of −2. That is, in this range of the
exchange field the system is in the QAH, or Chern insulator
phase. It is worth recalling here that in the case of a metal in
which the spin-nonconserving part of the spin-orbit interaction
is hypothetically switched off,31 the intrinsic anomalous Hall
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FIG. 3. (Color online) Spin Hall conductivity and anomalous Hall

conductivity of the Bi(111) bilayer with respect to the scaled strength
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with B = 0.0 eV (B = 0.15 eV), while purple diamonds mark the

AHC with B = 0.15 eV. The horizontal dashed line at SHC = − e

4π

stands for the quantized magnitude of the SHC if the spin-flip part of

the SOC is switched off.

conductivity is given by the sum of the Hall conductivities for
spin-up and spin-down bands, while the spin Hall conductivity
is given by their difference (spin is a good quantum number
in such a case).31,37 Evidently, such a correspondence between
the Chern number and the spin Chern number, i.e., their
representation as the sum and the difference of the Chern
numbers for spin-up and spin-down bands, holds true for the
Bi(111) bilayer with a gapped spectrum of σz, based on the
argument that a unitary transformation (eigenvectors of σz in
our case) of the occupied states will keep the Chern number
invariant.38

Examining the electronic structure of the system, presented
in Fig. 2, reveals that it is the spin mixing accompanied
by the exchange of the Chern number between valence and
conduction bands that leads to the phase transition from the
T -conserved TI phase to the QAH phase through the T -broken
TI and metallic phases. The occurrence of the metallic phase
has not been predicted previously, e.g., for graphene9 or
Bi2Se3.39 It emerges due to an overlap in energy of bands
with opposite spin character in the vicinity of the Ŵ point
[cf. Fig. 2(c)], which is characteristic of a material with a
nonmonotonous dispersion of the bands on both sides of the
Ŵ point. Such a metallic phase cannot be achieved, e.g., for
pure Dirac bands, which have a local maximum (minimum) at
the high symmetry (in this case) Ŵ point, as is evident from
Fig. 2(c).

Our transport calculations according to Eq. (3) show that
a finite AHC develops in the metallic and QAH phases; see
Fig. 2. Microscopically, the nonvanishing AHC can be traced
back to the development of the singular Berry curvature in k

space as the B field is increased; see Figs. 2(g)–2(j). For B

below 0.31 eV the Berry curvature has a nontrivial distribution
in the BZ with the regions of positive and negative values
of comparatively small magnitude [Fig. 2(g)], while the BZ
integral of the Berry curvature amounts to zero.

At the onset of the metallic phase there is a noticeable
hybridization between the conduction and valence bands of
opposite spin, which gives rise to a very large negative
contribution to the Berry curvature around the points in the BZ
at the Fermi level EF , where the orbital character and the spin
character of the valence and conduction bands are changing,
or, in the terminology of Ref. [ 31], along a “hot loop” in the BZ
[Figs. 2(c)–2(e) and 2(h)–2(j)]. In such a situation, the Berry
curvature and the AHC, which is proportional to the integrated
value of the Berry curvature over the BZ, are dominated by
the spin-flip transitions mediated by the non-spin-conserving
part of the spin-orbit interaction.31 At the Ŵ point, the sign of
the Berry curvature reverses for B > 0.3 eV, accompanying
the switch in parity of the valence and conduction bands.

In the metallic phase, the AHC as a function of B is
monotonously increasing (Fig. 1), while the radius of the hot
loop is increasing owing to the shift of the hybridization point
between the valence and conductance bands away from Ŵ

(Fig. 2). When the gap is reopened for B > 0.42 eV, the AHC

reaches a value of −2 e2

h
, with Chern number C = −2; see

Fig. 2. In the QAH phase, we observe from our calculations
that, out of six valence bands, the two topmost bands dominate
the contribution to the AHC for exchange fields up to 0.60 eV.
When the exchange field is increased further, deeper spin-up
bands will be pushed closer to the Fermi energy and take the
spin-down character derived from the conduction bands [cf.
Fig. 1(e)], also providing a contribution to the Berry curvature.

IV. EDGE STATES

We turn now to the properties of the edge states in the
Bi(111) bilayer zigzag ribbon with a width of 80 atoms in the
y direction and that is periodic (infinite) in the x direction.21

The tight-binding Hamiltonian of the ribbon was constructed
in terms of the MLWFs by a mere termination of the 2D
(infinite) Hamiltonian after 40 unit cells in the y direction. For
the Bi(111) ribbon, when T symmetry is not broken, there
are 12 edge states in total, as evident from Fig. 2(k). Six of
them are located on each side of the ribbon, while out of these
six there are three spin-up left movers and three spin-down
right movers. The axis of spin polarization of the edge states
is determined by the details of the electronic structure and
spin-orbit interaction and can be also energy dependent.22

Applying the exchange field to the ribbon breaks the T

symmetry, lifts the spin degeneracy, and polarizes the edge
states along the direction of the applied field [see Figs. 2(l)–
2(o)]. A close inspection of the edge bands in the case of
the TRB TI phase [Fig. 2(l)] reveals that the edge states do
not connect the valence and conduction bands in the system,
as in the case of the edge states of a conventional TI [cf.
Fig. 2(k)]. This means that the Hamiltonian of the system can
be transformed such that the spectrum at the edges exhibits
a gap at the Fermi energy. Moreover, owing to the breaking
of the T symmetry, backscattering is, in general, allowed,
which results in the dissipative transport properties of the edge
states.9 Noticeably, in the QAH phase [Figs. 2(n) and 2(o)]
the connection of the valence and conduction bands of the
bilayer via the edge states is restored again, resulting in a
dissipationless longitudinal transport of the ribbon, realized
by the topologically protected edge states.

035104-4



TOPOLOGICAL PHASES OF Bi(111) BILAYER IN AN . . . PHYSICAL REVIEW B 86, 035104 (2012)

Atom no.

5.0-5.0-

4.0-4.0-

3.0-3.0-

2.0-2.0-

1.0-1.0-

00

1.01.0

2.02.0

3.03.0

P
z

1 2 3 4 5 6 7 8 9

B = 0.05 eV
B = 0.15 eV
B = 0.50 eV
B = 0.80 eV

7172 7374 7576 77 787980

FIG. 4. (Color online) Spatial distribution of the spin polarization

Pz at the Fermi energy of the edge states in a zigzag Bi(111) ribbon

with a width of 80 atoms. Pz is obtained as a sum of the expectation

values of σz for all edge states at the constant energies [marked

with dashed lines in Figs. 2(a)–2(e)], multiplied by the weight of

the corresponding wave function on the given atom. The structure of

the edge states on each side of the ribbon is marked with circles to

the left (left edge) and to the right (right edge) of the value of the

corresponding exchange field B. While the direction of propagation

of the edge states is marked with white dots (white crosses) for the

direction towards the reader (away from the reader), red (blue) circles

mark the predominantly spin-up (spin-down) character of the edge

states. The bottom inset depicts the distribution of Pz for B = 0.05

eV (in arbitrary units, with red for positive and blue for negative

values) along and across the ribbon, where yellow spheres stand for

the positions of Bi atoms.

Of particular interest here is the spatial distribution of

the spin polarization of the edge states around the Fermi

energy, Pz, which plays a very important role in spin-polarized

scanning tunneling microscopy (SP-STM) experiments.40 We

calculate this spin polarization as a function of the B field in

real space across the ribbon and present the results in Fig. 4.

Let us consider first the case of a very small exchange field

B = 0.05 eV and look at the spin polarization at EF across

the ribbon (Fig. 4). We observe that the spin polarization (i)

is rather localized at the edges of the ribbon, (ii) reaches very

large values, and (iii) displays oscillations in sign across the

ribbon. These properties can be understood by referring to

the electronic structure of the edge states for this value of the

field, which is quite similar to that depicted in Fig. 2(l), only

with the smaller separation between the upper (predominantly

spin-up) and lower (predominantly spin-down) subgroups

of two edge states, so that there are 12 states at EF all

together. The direction and spin character of the edge states

at EF are sketched in Fig. 4. We observe that owing to

the presence of the nonzero exchange field and breaking

of T symmetry, the edge states get spin polarized, while

on each side of the ribbon the number of right and left

movers is equal for B < 0.42. This results in zero transverse

charge conductance, in accordance with the phase diagram

(Fig. 1).
For larger wave vectors |kx · a| ≈ π [see Fig. 2(l)], the

upper group of two states has a strong spin-up character, and for
B = 0.05 eV (not shown) it crosses the Fermi energy, giving
rise to a strong spin polarization in the direction of the B field.
Since the states with larger kx (away from the bulk bands) are
more localized at the edges of the ribbon than the states with
smaller kx (closer to the bulk bands),21 positive Pz in Fig. 4
for this field is localized at the ribbon edges. Correspondingly,
the states at EF close to Ŵ are the source of negative spin
polarization, which is smeared more across the ribbon owing
to stronger hybridization with the bulk states, thus giving rise
to the change in the sign of Pz away from the ribbon edges. We
speculate that such oscillatory spatial dependence of Pz should
be a common phenomenon in a situation where the electronic
structure of the edge states of a 2D TI exposed to an exchange
field is nontrivial. The spatial distribution of the Pz in the unit
cell for this case is illustrated in the inset of Fig. 4.

Increasing the exchange field further pushes the tail of
long-wavelength spin-up edge states out of the bulk gap
completely around B = 0.15 eV [Fig. 2(l)]. In this case, there
are only eight edge states left, whose direction of the spin
polarization at the Fermi energy is opposite to the direction
of the B field. Since the Bi(111) bilayer exhibits a T -broken
TI phase for this value of B, there are two left and two right
movers on each side of the ribbon, with zero transported charge
[Fig. 4]. In correspondence to the predominantly spin-down
character of the edge states in k space, Pz is large and negative
in the vicinity of the edge of the ribbon. Noticeably, the spin
polarization decays much slower with the distance towards the
center of the ribbon, when compared to the case considered
previously, owing to the proximity of the edge states in k space
to the bulk states. We remark here that the predicted change
in sign of Pz is an interesting phenomenon, which can be
exploited experimentally, e.g., via tuning the strength of the
exchange field by deposition of different adatoms39,41 (see also
comments in Sec. V).

The evolution of the edge states for 0.15 � B � 0.80 eV
can be seen in Figs. 2(l)–2(o). As the exchange field is
increased, the magnitude of Pz gradually decreases since the
conduction and valence bands become very close in energy,
and the kF vectors of the edge states approach the Ŵ point.
This is particularly clear for the edge states in the QAH phase
at B = 0.8 eV, for which Pz and its decay rate into the ribbon
are very small (Fig. 4). For the regime of B in between 0.42
and 0.7 eV, i.e., at the onset of the QAH phase, the number
of edge states is the same as that in the T -broken TI phase at
B = 0.15 eV, but the emergent quantized charge conductance
of the edge states proportional to C on each side of the ribbon
is evident (Fig. 4). When B > 0.7 eV four more edge states are
pushed out of the bulk gap window, and only four edge states
crossing EF are left overall. In this case, we have a situation
of two right/left movers on each side of the ribbon, with
a small positive spin polarization (Fig. 4). The microscopic
mechanism for spin-polarized electron conduction in these
edge states without the possibility to backscatter remains an
open and interesting topic for future studies.
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V. SUMMARY

In this work, based on first-principles calculations, we have
considered the emerging topological phases of the Bi(111)
bilayer in an external exchange field B. We identify four
different phases as the exchange field is varied: the TI phase
for B = 0, the T -broken TI phase for small fields, the metallic
phase for intermediate fields, and the Chern insulator, or QAH,
phase for large exchange fields. We consistently identify each
of the insulating phases in terms of the Chern number C, spin
Chern number Cs , spin, and charge transverse conductivity. We
attribute the origin of the phase transitions to the spin-orbit
mediated spin mixing between the valence and conduction
bands whose topology in k space is controlled by the applied
field.

In particular, we focus on the electronic structure and
development of the edge states in a zigzag ribbon of the
Bi(111) bilayer as a function of the B field. We show that
the spin polarization of the edge states along the direction
of the exchange field at the Fermi level can be significant in
magnitude, and its sign as well as its spatial distribution can
be controlled by changing the magnitude of the applied field.
Since reversing the direction of the exchange field leads to a
reversed propagation direction and a reversed spin polarization
of the edge states, the exchange field provides a tool to tune
the properties of one-dimensional spin-polarized transport
arising at the edges of insulators with nontrivial topological
properties. We also speculate that the spin polarization of the
edge states, which characterizes different topological phases,
can be observed in, e.g., scanning tunneling microscopy
experiments.

We remark that the experimental realization of the tunable
exchange field applied to a thin Bi(111) bilayer can be sought

in two directions. One way lies in finding a suitable insulating
substrate for deposition of Bi(111) which exhibits essential
magnetism at least at the interface with the bilayer. In this
case the direction of the B field can be easily (depending on
the magnetocrystalline anisotropy energy) reversed, while the
magnitude of the exchange field can be tuned via, e.g., the
magnetoelectric effect if the substrate used for deposition has
multiferroic properties. The second route lies in deposition of
transition metal adatoms on the Bi(111) surface. Recently,
it has been demonstrated theoretically that such adatom
deposition can induce considerable exchange splitting with
a magnitude as large as several tenths of eV on the topological
insulator underneath,41 and for Bi2Se3, the exchange field
is large enough to get the system into the QAH phase.39

The magnitude of the exchange field in this case can be
controlled by an appropriate choice of the transition metal
or by deposition of the system on an insulating nonmagnetic
substrate, which can cause essential modifications in the
distance between the TI and deposited adatoms. We also note
that, generally speaking, the magnitude of the exchange field
necessary to achieve the QAH phase in the phase diagram of
Fig. 1 depends directly on the initial value of the gap in the TI
phase without the field.
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41H. Zhang, C. Lazo, S. Blügel, S. Heinze, and Y. Mokrousov, Phys.

Rev. Lett. 108, 056802 (2012).

035104-7


