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One-dimensional ballistic transport with FLAPW Wannier functions
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We present an implementation of the ballistic Landauer-Büttiker transport scheme in one-dimensional systems

based on density functional theory calculations within the full-potential linearized augmented plane-wave

(FLAPW) method. In order to calculate the conductance within the Green’s function method, we map the

electronic structure from the extended states of the FLAPW calculation to Wannier functions, which constitute a

minimal localized basis set. Our approach benefits from the high accuracy of the underlying FLAPW calculations,

allowing us to address the complex interplay of structure, magnetism, and spin-orbit coupling and is ideally

suited to study spin-dependent electronic transport in one-dimensional magnetic nanostructures. To illustrate

our approach, we study ballistic electron transport in nonmagnetic Pt monowires with a single stretched bond

including spin-orbit coupling, and in ferromagnetic Co monowires with different collinear magnetic alignment

of the electrodes with the purpose of analyzing the magnetoresistance when going from tunneling to the contact

regime. We further investigate spin-orbit scattering due to an impurity atom. We consider two configurations: a

Co atom in a Pt monowire and vice versa. In both cases, the spin-orbit induced band mixing leads to a change

of the conductance upon switching the magnetization direction from along the chain axis to perpendicular to it.

The main contribution stems from ballistic spin scattering for the magnetic Co impurity in the nonmagnetic Pt

monowire, and for the Pt scatterer in the magnetic Co monowire from the band formed from states with dxy and

dx2−y2 orbital symmetry. We quantify this effect by calculating the ballistic anisotropic magnetoresistance, which

displays values up to as much as 7% for ballistic spin scattering and gigantic values of around 100% for the Pt

impurity in the Co wire. In addition, we show that the presence of a scatterer can reduce as well as increase the

ballistic anisotropic magnetoresistance.
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I. INTRODUCTION

With the possibility to perform transport measurements

on nanoscale down to atomic-scale junctions using mechan-

ically controllable break junctions1 or scanning tunneling

microscopy,2–7 various fundamental questions on electron

transport as well as practical problems concerning device

functionality have arisen. With shrinking system size, the junc-

tions have become considerably smaller than the mean-free

path of a transmitted electron, reaching the ballistic transport

regime. In this regime, various effects such as the geometric

arrangement of the atoms, the chemical composition, the

magnetic order, vibrations, correlation effects, or the magnetic

anisotropy can play an important role due to the reduced

coordination number of the participating atoms. In the context

of spin-dependent transport, for example, there is a strong

interest in understanding how the spin-valve effect scales

to systems of atomic or molecular scale.7,8 In nanoscale

junctions, new transport effects can also arise such as the

ballistic anisotropic magnetoresistance (BAMR).9,10 In order

to successfully address such issues, a theoretical description

needs to properly take into account the electronic structure

of the system, which is typically obtained by first-principles

methods based on density functional theory (DFT). The central

experimental quantity is the measured current versus bias

voltage (I-V curve) or, at small bias voltages, the conductance.

The theoretical method most frequently applied to describe

quantum transport in such systems is the Landauer-Büttiker ap-

proach in which the junction is divided into a central scattering

region and two leads in thermal equilibrium with contact reser-

voirs (Fig. 1), resulting in the famous Landauer conductance

formula.11 Basically, two different groups of techniques have

been developed to solve the transport problem: wave-function

based and Green’s function (GF) based methods, which

are equivalent in case of noninteracting charge carriers.12

Among the wave-function based methods, the transmission

through such a quasi-one-dimensional (1D) system can be

calculated by means of the transfer matrix method,13–17 solving

the Lippmann-Schwinger equation,18,19 or by wave-function

matching.20 The GF methods are usually based on Keldysh,

)E(T

FIG. 1. (Color online) Typical geometry of a ballistic transport

calculation, consisting of three different regions (left lead/scattering

region/right lead). Charge carriers with energy E are transmitted

through a scattering region with a transmission probability T (E)

from the left lead to the right lead. The blue planes separate the leads

from the scattering region. While the semi-infinite leads resemble

the electronic structure of a periodic system, the scattering region

includes the scatterer as well as the lead-scatterer contact region.
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Kadanoff, and Baym’s nonequilibrium Green’s functions

(NEGF).21,22 Beyond the standard noninteracting electron

approach, there has been work incorporating, e.g., inelastic

scattering on vibrations23,24 or treating correlation effects

through self-energies.25 An alternative way of calculating

quantum transport is by using the Kubo approach as formulated

by Baranger and Stone,26 relating the current to the dynamical

polarization.27,28

Based on these three general approaches, all codes differ

in the way the electronic structure is described. In the first

implementations based on density functional theory, the

electrodes were treated as jellium which were coupled to

the scattering region.15,17,18 Large systems up to devices can be

described using semiempirical tight-binding methods for the

electronic structure,13,14,19,29,30 while approaches using DFT

for both the description of the electrodes via self-energies and

the scattering region promise the highest accuracy.27,28,31–44

Among these implementations, various DFT methods have

been applied. Transport codes based on Green’s functions

rely on a localized basis set, limiting this approach to basis

sets of numerical orbitals such as Gaussians,34,42 localized

orbitals,32,33,35,38,45 or wavelets.36 The application of flexible

and accurate plane-wave DFT methods for transport calcu-

lations is usually realized in connection with the scattering

approach for the conductance.46,47 Alternatively, the efficient

GF method for the transport calculation can be used if the

extended states in the plane-wave expansion are mapped

onto maximally localized Wannier functions48 (MLWFs).

This approach combines plane-wave calculations with the

use of a minimal basis set suitable for quantum trans-

port calculations.36,37,43,49,50 When one is dealing with low-

dimensional systems and subtle band-structure effects such

as spin-orbit coupling, the accuracy of electronic-structure

description becomes crucial. Therefore, the application of a

highly precise all-electron full-potential linearized augmented

plane-wave code is desirable. To our knowledge, no such DFT

transport scheme has been reported, and only a few codes allow

to incorporate spin-orbit coupling.47,51–53

In this paper, we present a method to calculate transport

through 1D nanoscale structures following the Landauer-

Büttiker approach. The underlying electronic structure of the

studied system is obtained from DFT within the 1D version54

of the full-potential linearized augmented plane-wave method

(FLAPW), as implemented within the FLEUR code.55 The 1D

FLAPW method is specifically tailored to treat 1D structures

avoiding supercell calculations: the periodicity is explicitly

taken into account only along the nanostructure’s axis (z axis

in the following), while the wave functions in the vacuum

surrounding the system are forced to obey an exponential

decay.54 Since the FLAPW wave functions are intrinsically

delocalized in real space, we perform a mapping of the

electronic structure of the system onto a set of localized

Wannier functions (WFs), which allows us to solve the

transport problem in real space efficiently. The WFs obtained

from the FLAPW calculation (FLAPW WFs) (Refs. 56 and 57)

provide a minimal localized basis set which describes the

ab initio electronic bands within a certain energy window

with high accuracy and allows us to efficiently compute

the nonequilibrium Green’s function (NEGF) of the system

needed to determine its transmission function T (E). We use

and compare two different sets of WFs, namely, the maximally

localized Wannier functions,48 which are uniquely defined by

fulfilling the condition of maximal localization in real space,

and the so-called first-shot Wannier functions (FSWFs),56

being much easier to obtain computationally and, although

nonunique, still capable of describing the transport properties

of a system correctly in many cases. A special approximation

we include in our transport scheme is the so-called “locking

technique,” which allows us to use separately calculated leads

and scattering regions and to combine those into one quantum

transport calculation, achieving an accurate treatment of leads

and scattering region at reduced computational cost.

As a first application, we have calculated the electronic

structure and the ballistic transport properties of a nonmagnetic

Pt monowire with a single stretched bond in the middle of the

chain, which acts as a source of scattering. For this rather

simple system, we demonstrate the quality of our MLWFs and

FSWFs, the locking technique to obtain the Hamiltonian of

the open system, and show the possibility of decomposing the

transmission function in terms of orbital symmetry. We further

investigate the influence of spin-orbit-coupling (SOC) on the

transmission of the Pt wire. We find a substantial change of the

conductance of one quantum of conductance at the Fermi level

for a perfect wire due to the strength of SOC in 5d-transition

metals such as Pt.

In order to include the effect of large spin polarization,

we have chosen a ferromagnetic Co monowire with a single

stretched bond, a prototypical magnetic system, and calculate

the magnetoresistance from the conductance in a parallel and

antiparallel alignment of the Co electrodes. We obtain a rapid

decrease of the magnetoresistance with the separation between

the two Co monowires, which is due to the fast decay of

transmission from the highly spin-polarized localized states of

dxz,yz and dxy,x2−y2 symmetry.

Finally, we have studied scattering from a single impurity

atom in a monowire due to SOC. We have chosen two

configurations: (i) a nonmagnetic Pt atom in a ferromagnetic

Co wire and (ii) a magnetic Co atom in a nonmagnetic Pt wire.

In both cases, we have compared the conductance obtained in

the scalar-relativistic approximation and upon including SOC.

We find a strong influence of SOC on the transmission due to

the induced splitting of bands. In addition, the conductance

depends sensitively on the magnetization direction in the

system being either along the wire axis or perpendicular

to it. While in case (ii) the resulting ballistic anisotropic

magnetoresistance displays values of 7% due to spin-orbit

interaction mediated scattering into both spin channels for

the symmetry-breaking out-of-chain quantization axis, in case

(i) the values of BAMR reach as much as 100%, reflecting the

giant value of the ballistic anisotropic magnetoresistance of

the pure Co chain.

The paper is organized as follows. In Sec. II, we describe

the theoretical basis of our approach to calculate the con-

ductance and introduce the key quantities. In particular, the

Green’s function method is applied to obtain the transmission

function and the conductance. The mapping of the electronic

structure from the FLAPW method to a localized basis set

is accomplished via Wannier functions. The construction of

the Hamiltonian for the open quantum system is described.

In Sec. III, we present the first applications of our transport
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code to several typical systems of interest. We begin with

the conductance for a nonmagnetic Pt wire with a single

broken bond and study the transmission as a function of

bond length and upon including spin-orbit coupling. Then, the

magnetoresistance of Co monowires with a single elongated

bond is discussed. Finally, the effect of spin-orbit scattering

is illustrated by two examples: a Pt monowire with a single

magnetic Co atom and a Co monowire with a single Pt atom.

A summary and conclusions are given in Sec. VI.

II. METHOD

A. General transport problem

We describe the transport properties of the system within

the Landauer-Büttiker approach, dividing it into three different

regions: two semi-infinite leads (left L and right R) and the

scattering region (S), which includes the actual scatterer as

well as the lead-scatterer contact region, in which the effect

of the scatterer on the properties of the leads ideally decays

such that their electronic structure can be considered perfect

and unperturbed inside the L and R regions. Assuming that the

interaction between the left and right leads can be neglected,

the tight-binding Hamiltonian of our system corresponding to

such a structural division has the following form:

H =





HL H
†
LS 0

HLS HS HSR

0 H
†
SR HR



 , (1)

where HL/R is the semi-infinite Hamiltonian of the left/right

lead, while HLS/SR describes the coupling of the scattering

region to the leads and HS is the Hamiltonian of the scattering

region. Due to the semi-infiniteness of the leads, the dimension

of the Hamiltonian (1) is infinite, which presents a conceptual

computational problem. An efficient method to deal with that,

applicable to any system of the type depicted in Fig. 1, which

can be described with a real-space tight-binding Hamiltonian

of the type of Eq. (1), has been developed.58,59 This method

is based on the nonequilibrium Green’s function formalism,

which treats the scattering region and the semi-infinite leads

on equal footing, describes extractions, reinjections, and

excitations of electrons in the system and solves the problem

of the semi-infinite leads by introducing finite-dimensional

self-energies �gL/R , which include the true lead’s effect on the

scattering process. Within the NEGF formalism, the system is

described by means of the retarded Green’s function

G(E) = [(E + iǫ)I − H]−1, (2)

where I denotes the unity matrix of the dimension of H. By

neglecting at first the coupling of the leads to the scattering

region and regarding just the first few layers of the leads

which are actually interacting with the scattering region, it

is possible to replace the leads’ Green’s function by their

surface Green’s functions gL/R(E).58,59 This can be derived

by rewriting the lead’s Hamiltonian in a block-diagonal form

using square matrices hL/R and hLL/RR of the same dimension

as the surface Green’s function:

HL =











. . . 0

hL h
†
LL

hLL hL h
†
LL

0 hLL hL











. (3)

Based on this description of the leads, the surface Green’s

function gL/R(E) can be determined iteratively, starting from

g[0]
L/R(E) = [(E + iǫ)IL/R − hL/R]−1, (4)

with g[0]
L/R(E) being a square matrix with the dimension of

interacting orbitals at the leads’ surfaces. The expression (4)

can be converged to the surface Green’s function by recursively

incorporating the interlayer interaction submatrices hLL/RR

with an efficient recursive scheme.60

By reintroducing the coupling of the scattering region to

the leads as a perturbation to the system, the Green’s function

GS(E) of the scattering region can be obtained from the

unperturbed Green’s function of the scattering region by the

Dyson equation

GS(E) = [EIS − HS − H
†
LSgLHLS − H

†
SRgRHSR]−1. (5)

The whole effect of the semi-infinite leads on the conductor

can be then expressed by the leads’ self-energies �L/R(E),

which incorporate the surface Green’s function gL/R(E) and

the now finite-sized coupling matrices HLS/SR adapted to the

size of the surface Green’s functions:

�L/R(E) = H
†
LS/SRgL/R(E)HLS/SR. (6)

The self-energies are obviously finite-sized matrices of the di-

mension of HS . The self-energies are related to the broadening

matrices Ŵ:

ŴL/R(E) = i[�L/R(E) − �
†
L/R(E)], (7)

which describe the effect of broadening of the states in the

scattering region caused by the presence of the leads as well

as the transfer rates of charge carriers from the leads into

the scattering region. The incorporation of the non-Hermitian

self-energies changes the nature of the description from the

static steady-state picture of the open system to a dynamic

transport scheme, responding to an incoming charge carrier

with the energy E. Based on these quantities, the transmission

function T (E), describing the probability of charge carriers

originating from one lead to be transmitted to the other lead,

can be expressed in the following way:

T (E) = Tr[GS(E)ŴL(E)G
†
S(E)ŴR(E)]. (8)

The current, being a natural observable in a quantum transport

measurement, can then be calculated from the Landauer

formula

I =
e

h

∫

dE T (E)[fL(E) − fR(E)], (9)

where fL/R are the occupation functions of the leads. The

expression for the conductance then reads as

G(E) =
e2

h
T (E). (10)
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In the case of perfect transmission T (E) = 1, this results in

the well-known conductance quantum

G0 =
2e2

h
. (11)

for a single, spin-degenerate band.

B. From FLAPW states to localized Wannier functions

The aim of the approach introduced here is to combine the

accuracy and speed of state-of-the-art DFT electronic-structure

calculations based on the one-dimensional version of the

FLAPW method as implemented in the FLEUR code,54 and

the capability of the NEGF formalism described above to

treat the whole transport problem in an efficient way. In

particular, for transport phenomena driven by magnetism or

spin-orbit coupling, a precise description of the electronic

structure is necessary. Typical systems currently under scrutiny

in experiment include geometries with a low coordination

number which favors magnetism and gives rise to strong SOC

due to unquenching of the orbital moment.2

The major problem in combining a LAPW or a plane-

wave-based electronic-structure method with the real-space

transport schemes lies in the fact that normally several

hundreds of delocalized basis functions per atom are used

in such codes in order to achieve the required accuracy. In our

implementation, we use the machinery of Wannier functions,

constructed out of FLAPW wave functions,56 which proved

to be an efficient connection between the two, conceptually

independent, computational methods. The main advantage in

such a “link” can be attributed to two factors: (i) using the

gauge freedom of Wannier functions, they can be enforced

to be rather localized in real space, and (ii) an “exact”

mapping of the ab initio Hamiltonian onto a tight-binding

representation with WFs as a localized orthonormal basis set

can be achieved.61

Having at hand the converged Bloch wave functions ψmk

for a set of bands m � M calculated on a uniform mesh of

N k points, the orthonormal set of Wannier functions can be

obtained via the following transformation62:

|WRn〉 =
1

N

∑

k

e−ik·R
M

∑

m=1

Uk
mn |ψkm〉 , (12)

where the number of WFs N should be smaller than or equal

to M . The gauge freedom of WFs manifests itself in that the

matrices Uk
mn (in the following, U matrices) can in principle

be arbitrary. In the case when N = M and the group of bands

from which we are extracting the WFs is isolated from other

bands, the U matrices are unitary at each k point. Imposing

the constraint of maximal localization of WFs in real space

determines the set of U matrices up to a common global phase,

and the corresponding set of WFs is called the maximally

localized Wannier functions.48 For the whole procedure of

maximal localization, we use the WANNIER90 code.63

The criterion for the localization of WFs is the smallness

of their spread.48 The process of the spread minimization

constitutes an iterative process at the end of which the U
matrices corresponding to the MLWFs are obtained. This

minimization procedure requires as a starting point a certain

initial guess for the set of the MLWFs. In order to construct

this set, one chooses certain localized orbitals |gn〉, which are

projected onto the subspace of wave functions |ψkm〉:

|φkn〉 =
∑

m

|ψkm〉 〈ψkm | gn〉 , (13)

and then orthonormalized

|ψ̃kn〉 =
∑

m

((S(k)))−
1
2 |φkm〉 , (14)

with the overlap matrix S(k)
mn = 〈φkm | φkn〉, after which the

starting WFs can be generated:

|WRn〉 =
1

N

∑

k

e−ik·R|ψ̃kn〉. (15)

This orthonormal set of Wannier orbitals we will call in the

following the first-shot WFs (FSWFs).

The FSWFs are not unique in the sense that they strongly

depend on the choice of the localized orbitals gn. In many

cases, however, especially when MLWFs are well localized

around atoms as in the case of certain d orbitals in most of

transition metals and transition-metal oxides,64 the difference

between the FSWFs, originated from the localized d orbitals,

and the corresponding MLWFs is rather small. This allows us

to spare the computational time needed for the minimization

of the spread, and immediately construct, e.g., the needed

effective Hamiltonians in terms of FSWFs. Examples, when

there is a substantial difference between the FSWFs and

MLWFs, include orbitals for which the centers of the WFs

do not coincide with the centers of atoms. In the following,

we will analyze in detail the difference in transport properties

calculated with MLWFs and FSWFs, both in the case when

there is little difference between the two sets of WFs and when

the difference between them is significant.

C. Construction of the Hamiltonian in real space

In terms of the FLAPW basis functions, the Hamiltonian

can be written as

HFLAPW =
1

N

∑

mk

εm(k) |ψmk〉 〈ψmk| , (16)

while in terms of WFs the equivalent expression is

HWFs =
∑

nR1

∑

n′R2

Hn,n′ (R1 − R2)|WnR1
〉〈Wn′R2

|, (17)

where

Hn,n′ (R1 − R2) = 〈WnR1
| HFLAPW | Wn′R2

〉 (18)

are the hopping integrals between the n and n′ Wannier orbitals

at sites R1 and R2. By substituting Eq. (16) into Eq. (18), we

find

Hn,n′ (R1 − R2) =
1

N

∑

m,k

εm(k)〈WnR1
| ψmk〉〈ψmk | Wn′R2

〉.

(19)

Thus, the real-space representation of the Hamiltonian in

terms of localized Wannier functions can be derived from

the knowledge of the eigenvalues and wave functions of

the system. In respect to WFs, for efficient evaluation of

Eq. (19), only knowledge of the U matrices is required.56 The
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left lead right leadscattering region

super-cellperfect wire

hLL/RR HLS HSR

HShL/R

hLL/RR

FIG. 2. (Color online) Schematic sketch of a ballistic transport

calculation based on a WFs tight-binding Hamiltonian. The leads are

described by perfect wires to exclude spurious deviations from their

exact electronic structure. Their semi-infinite structure is constructed

from the Hamiltonians of principal layers hL/R and the interaction

matrices hLL/RR between two principal layers. The scattering region

is described by the Hamiltonian HS and coupled to the leads by the

interaction matrices HLR/SR , extracted from a supercell calculation.

The supercell has to be large enough to reproduce the lead-scatterer

contact with desired accuracy, usually larger than sketched here.

correspondence in the eigenspectrum between the constructed

Hamiltonian in terms of WFs and the Hamiltonian in terms of

eigenfunctions is exact on the grid of k points used for the WFs

construction, and for this reason the set of WFs is sometimes

referred to as exact basis set, or, the tight-binding basis set of

ab initio accuracy. (This is only valid within the frozen inner

window of disentangled systems.65)

According to Eqs. (4) to (8), in order to calculate the

transmission function, only the hL/R , hLL/RR , HLS/SR , and

HS parts of the Hamiltonian are needed. Given a FLEUR

electronic-structure calculation, it is necessary to construct

these parts of the Hamiltonian from the resulting WFs hopping

elements [Eq. (19)]. We focus on the correct treatment of the

scattering region (see Fig. 2).

After determination of the atoms belonging to the scattering

region, it is possible to write down the preliminary result for

HS , based on Eq. (19),

HS =
∑

i,n

∑

j,m

Hn,m(Ri − Rj )|WnRi
〉〈WmRj

|, (20)

where i and j determine the atom and n and m the inherent

WFs.

Due to the real-space decay of the WFs, the corresponding

hopping matrix elements Hn,n′ (Ri − Rj ) also decay as the

distance in real space between the Wannier functions |Ri − Rj |

is increasing. For an efficient use of the real-space WFs

Hamiltonian within the transport scheme described above, it is

necessary to keep its matrix elements only up to a certain

number of nearest neighbors (NN), setting the rest of the

elements to zero. As a result of this procedure, the Hamiltonian

matrix becomes sparse, which allows for a computationally

inexpensive treatment. For a given number of NN, the quality
of the sparse Hamiltonian depends on the degree of localization

of the WFs. Here, by quality of the Hamiltonian, we mean

the correspondence between its eigenvalue spectrum to that

obtained from ab initio, or, in the sense of transport, how well

converged the transmission function T (E) is with respect to the

number of NN. In this respect, in the following we compare

and analyze the results obtained with MLWFs and FSWFs,

which display different localization properties.

One way to deal with the exponential decay in Eq. (20)

would be to manually eliminate all matrix elements beyond a

certain NN. We propose here a flexible scheme, minimizing

this effort by dividing the scattering region into principal

layers hl , l = 1, . . . ,s, and interaction matrices hl,l+1 between

neighboring layers:

HS =













h1 h
†
12 0

h12

. . .
. . .

. . . hs−1 h
†
(s−1)s

0 h(s−1)s hs













. (21)

The submatrices are set up as Eq. (20). For the onsite matrices

hl , the indices i and j are restricted to atoms from the given

layer l. For the interaction matrices hl,l+1, the index i is

restricted to atoms from layer l and the index j to atoms

of the neighboring layer l + 1..

While still capable of describing the system in terms of

Eq. (20) (with s = 1), the principal layers can optimally

contain the number of atoms effectively interacting, reducing

the number of neglected hoppings. Typically, these principal

layers are chosen to contain the same number of atoms

as the principal layers of the leads, resulting in the same

approximation in terms of NN for both regions and thereby

avoids inconsistencies in the transport calculations. Further-

more, this scheme allows possible future extensions such as,

e.g., a combination of separately calculated scatterers into one

scattering region.

Knowing the Hamiltonian HS of the scattering region,

it is necessary to determine the coupling of the scattering

region to the leads. Since the Hamiltonians of both leads

and the scattering region are partitioned into principal layers

[see Eqs. (3) and (21)], we only need to find the hopping

elements between the adjacent layers. Interactions between

non-neighboring layers are neglected by construction. The

nonzero elements of HLS can now be extracted from the

supercell calculation (see Fig. 2) as

HLS =
∑

i,n

∑

j,m

Hn,m(Ri − Rj )|WnRi
〉〈WmRj

|, (22)

where the index i runs over the atoms of the principal layer 1 of

HS and the index j runs over the principal layer of the left lead.

HSR can be constructed analogously. To prevent a significant

systematical error, it is necessary to make the original supercell

large enough to screen an unphysical interunit cell interaction.

Finally, only the Hamiltonians for the leads are missing.

Ideally, the calculated unit cell should be large enough in order

to reproduce the properties of the bulk material far away from

the scatterer and thus, the lead Hamiltonian can be extracted
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directly from the supercell calculations in a straightforward

manner. Owing to the significant computational burden, it

is, however, hardly feasible to apply this approach to large

and complex systems while keeping at the same time the

accuracy necessary to capture the main energy scales of the

phenomena studied. The technique we use to overcome this

problem, particularly prominent for the FLAPW method with

its complicated basis set, is discussed in the following section.

Up to now, no comments have been made concerning the

way magnetic systems and the effect of SOC are treated. For

magnetic systems, the majority and minority spin channels

can be regarded separately, resulting in two independent

calculations of the transmission function for spin-up and

spin-down channels. In the presence of SOC, the whole

methodology holds considering that both spin channels have

to be treated together, thus resulting in twice the number of

WFs used simultaneously to solve the transport problem.

D. Locking technique

The accurate treatment of the leads within the approach

described above constitutes a considerable challenge. Taken

from a self-consistent supercell electronic-structure calcu-

lation as they are, the submatrices hL/R and hLL/RR will

contain deviations from “ideal”-lead matrix elements in a

large vicinity of the scattering region. While some of these

deviations are definitely physical in their origin due to a

large decay length of 1D charge perturbations caused by

the scatterer, the rest of them will be a spurious artifact of

the supercell approach owing to the fact that the leads as

calculated are not intrinsically semi-infinite. This presents a

considerable problem in particular when the leads have to be

described with Hamiltonians beyond the 1st NN. In this case,

to describe the semi-infinite leads precisely one would have

to go to huge supercells so that the A atoms in the supercell

describing the lead would be exactly identical, with A being

the number of atoms in one principal layer [see Eq. (3)].

We found that condition impossible to achieve for nontrivial

systems. Another approach of constructing a lead beyond 1st

NN artificially from the outmost atoms of the scattering region

by periodically expanding it is flawed, too, due to the unknown

unperturbed hopping matrix elements beyond 1st NN. This is a

serious problem since the lead has to be described as precisely

as possible to prevent a huge systematic error.

The basic idea to work around this problem is as simple

as effective, namely, matching the supercell hopping matrix

elements to those of the true leads. Within this so-called

“locking” technique, the leads are replaced by the perfect

wires, providing correct self-energies and Fermi levels of the

true infinite periodic system, while the supercell size is chosen

large enough to describe the lead-scatterer interface region

sufficiently well (see Fig. 2). In our transport approach, this

means that different parts of the Hamiltonian [Eqs. (20) and

(22)] are extracted from two different DFT calculations66–68:

the HS and HLS/SR coupling matrices are taken from the

supercell calculation describing the scattering region, while

the hL/R and hLL/RR submatrices [needed in Eq. (3)] are taken

from the calculation for the perfect leads. hL/R and hLL/RR

can be determined similar to the principal layers hl and hl,l+1

of HS [Eqs. (20) and (21)] with the principal layer l and the

neighboring identical layer l + 1. To achieve matching Fermi

levels for lead and supercell calculations, it is additionally

necessary to align the diagonal elements of the matrices hL/R

[Eq. (3)] and HS [Eq. (21)].

III. Pt MONOWIRES

In the following sections, we present a few instructive

applications which illustrate the quality and possibilities of our

FLAPW WF based approach to obtain the conductance in one-

dimensional magnetic systems within the Landauer coherent

transport method. In this section, we focus on Pt monowires,

which possess a single stretched bond that acts as a scattering

potential for electrons. Starting from the construction of the

WFs and the tight-binding-like Hamiltonian, we discuss the

transmission function and its decomposition in eigenchannels.

Our results further demonstrate the applicability of the locking

technique described above. Finally, we include spin-orbit

coupling in our calculations and show that the obtained

transmission compares well with that calculated based on

the scattering approach in combination with a pseudopotential

method for the electronic structure.47

In order to calculate the conductance within the approach

described in the previous sections, we need to perform two

separate DFT calculations and subsequent Wannierizations for

every system: (i) a calculation for the semi-infinite electrode

and (ii) a supercell calculation which includes the scattering

center. From the latter, we determine the hopping matrix

elements for the coupling to the leads. For the monowires

considered in the following, the Hamiltonian of the semi-

infinite electrode can be obtained from a calculation with one

atom in the unit cell. For the scattering region, we have used

supercells of different sizes as described in the computational

details section in the Appendix.

A. Band structure and hoppings

Before proceeding into the discussion of the transmission,

it is insightful to examine the localization properties of typical

MLWFs and FSWFs which we use for our transport calcu-

lations. While the unique MLWFs are rather well localized

in real space, this is not necessarily the case for the FSWFs,

which strongly depend on the choice of the initial orbitals. If

the trial orbitals do not differ very much from the final result

of the localization procedure, the difference in spread between

the MLWFs and the FSWFs can be small.

For transition-metal monowires, this is the case for the

localized d orbitals of �3 symmetry (dxz and dyz) and of

�4 symmetry (dxy and dx2−y2 ). Taking an infinite periodic Pt

monoatomic chain with an interatomic spacing of 4.48 bohr

as an example, we calculate the spreads of the �3 and �4

MLWFs to be 3.70 and 2.22 bohr2, respectively. The calculated

spreads of the FSWFs, constructed with solutions of the radial

equation for the actual potential obtained from the first-

principles calculation,56 are indistinguishable from the

former.

The situation is completely different, however, for the

FSWFs constructed from the s- and dz2 -like trial orbitals.

In this case, the difference in spread between the resulting

FSWFs and the �1-like MLWFs is remarkable. While values
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FIG. 3. (Color online) Comparison of the Pt monowire band

structure in SR approximation calculated within DFT (big black dots)

and obtained from the WF Hamiltonian based on (a) MLWFs and

(b) FSWFs considering a limited number of nearest neighbors. In

(a) the orbital character of the states is given and in (b) the bands

are denoted according to their symmetry with respect to the chain

geometry.

of 2.89 and 6.20 bohr2 are obtained for the spread of dz2 -like

and s-like MLWFs, respectively, the corresponding values

constitute 55.78 and 319.44 bohr2 for FSWFs. This indicates

that the MLWFs differ significantly from the trial functions.

The reason for the rather large spreads of the FSWFs can

be found by comparing the FSWF centers to the MLWFs

centers. In the case of MLWFs, the centers of the s-like WFs

are located between the atoms, forming covalent bridgelike

Wannier functions. Such Wannier functions are hard to

construct directly from the atom-centered trial orbitals. The

FSWFs constructed from the s- and dz2 -like trial orbitals are,

in contrast, located on the atoms, which causes a significantly

larger spread.69

In principle, all Hamiltonians obtained by mapping to

Wannier functions which include the hopping matrix elements

between all WFs are equivalent. This equivalency is lifted,

however, if we consider only a limited number of neighbors

to set up our tight-binding-like Hamiltonian. In Fig. 3, the Pt

monowire band structure based on the FLAPW calculation

and Slater-Koster interpolations of the band structure based

on MLWFs and FSWFs are compared. The trial orbitals for

the FSWFs are in this case chosen to be s- and d-like orbitals

and centered on each atom. While in first-NN approximation

the interpolated band structures differ between the MLWFs

and FSWFs approach, especially in the bandwidth of the

more delocalized s and dz2 orbitals, already in the second-NN

approximation both WFs basis sets describe the FLAPW band

structure equally well. By further increasing the considered

number of neighbors to the third-NN approximation, the

accuracy of the description increases with respect to the s

bandwidth. However, the most important part with respect to

transport properties is the band structure in the vicinity of the

Fermi level, which does not improve significantly. For the more
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FIG. 4. (Color online) Real-space hopping integrals between

orbitals of the same type |H (Ri − R0)| as a function of the NN for a Pt

monowire on a logarithmic scale. The hoppings were calculated both

with MLWFs (open red symbols) and FSWFs (closed black symbols)

for (a) s and dz2 orbitals, and for (b) dxy , dx2−y2 , dxz, and dyz orbitals.

localized dxy , dx2−y2 , dxz, and dyz orbitals, even the first-NN

description is sufficient as seen in the band structure and also

from the hopping matrix elements as seen in Fig. 4.

At least for a rather simple system such as a perfect Pt

monowire, the localization procedure used to obtain MLWFs

obviously does not influence the localized d orbitals mentioned

above. Only the s and dz2 states are affected, but the decay of the

hopping integrals is exponential irrespective of the description

(FSWFs or MLWFs). For systems more complicated than a

Pt monowire, the initial choice of trial orbitals may not be

straightforward. In such a case, the localization procedure

to obtain MLWFs significantly improves the accuracy of the

calculation, while for simpler systems where more intuitive

choices of orbitals can be made, FSWFs may be sufficient.

An example that both descriptions indeed lead to very similar

results with respect to transport calculations is shown below

for a Pt monowire with one elongated bond. Note that the

FSWFs make the construction of the transport Hamiltonian,

as discussed in Sec. II C, much more simple, especially for

systems with a more complex electronic structure.

B. Transmission: Scalar-relativistic case

With the aid of the Pt monowire DFT calculations and the

construction of WFs and the Hamiltonian from the hopping

matrix elements, it is now possible to calculate the conductance

based on the Green’s function method. We start by considering

the quality of the locking technique. For this purpose, we

compare the results for a rather small 6-atom-supercell calcu-

lation for the scattering region with a single elongated bond

of � = 0.72 bohr and a calculation performed in a 12-atom

supercell. The quantum conductance obtained for both cases

without applying the locking technique, i.e., constructing the

semi-infinite leads from the supercell calculation, is similar

but differs in key details such as a sharp peak just below

the Fermi energy [compare Figs. 5(a) and 5(b)]. If we

replace the Hamiltonian for the leads by the one constructed

from the MLWFs of a periodic Pt monowire, the result
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FIG. 5. (Color online) Conductance for a Pt monowire with a

single bond stretched by � = 0.72 bohr using MLWFs within the

nearest-neighbor approximation for the transport Hamiltonian and

(a) a 6-atom supercell and (b) a 12-atom supercell for the FLAPW

calculation of the scattering region. The semi-infinite leads have been

described using the supercell calculation (solid lines) or using the

locking technique (dashed lines), i.e., using perfect Pt monowires for

the leads.

changes as follows: While the conductance based on the

12-atom-supercell calculation is nearly independent on how

the lead was constructed, the result for the 6-atom calculation

improves significantly upon using the locking technique and

is almost indistinguishable from the calculation in the larger

12-atom supercell. This demonstrates the applicability and

quality of the locking technique, which allows us to save a

considerable amount of computational effort to calculate the

ballistic transport properties.

While the previous test has been performed within the

nearest-neighbor approximation for the tight-binding-like

Hamiltonian, we now determine how accurate the calculated

transmission function is with respect to the number of

neighbors included. In Fig. 6(a), the transmission functions,

calculated in first-, second-, and third-nearest-neighbor ap-

proximations and based on the 12-atom supercell for the

scattering region with one stretched bond of � = 0.72 bohr are

presented. The main effect which we observe upon including

more neighbors is a widening of the energy range in which the

conductance is nonzero as expected from the comparison of

the band structure obtained in the different approximations

(cf. Fig. 3). The conductance in the vicinity of the Fermi

energy which is dominated by the localized d states is well

described already using second nearest neighbors. Using only

the first nearest neighbor, on the other hand, results in an

offset of the conductance above the Fermi energy which

originates from a shift of the upper edge of the �3 band as

seen in the band structure. Therefore, we use at least the

second-nearest-neighbor approximation in the following to

construct the tight-binding-like Hamiltonian.

In order to understand which states contribute to the trans-

mission, we can decompose it with respect to the orbital sym-

metry of the Wannier functions. The individual transmission

channels can be derived from Eq. (8) by performing the trace
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FIG. 6. (Color online) (a) Conductance for a Pt monowire with a

single bond stretched by � = 0.72 bohr based on a 12-atom-supercell

calculation using the first-, second-, and third-nearest-neighbor

approximations for the construction of the transport Hamiltonian

from MLWFs and the locking technique to attach the leads.

(b) Decomposition of the total conductance (solid line) for the

second-nearest-neighbor approximation into the contributions of the

s-dz2 (�1) (solid red line), the dxz-dyz (�3) (dotted blue line), and

the dxy-dx2−y2 (�4) (dashed-dotted orange line) channels.

operation only over WFs within the same symmetry group. In

Fig. 6(b), we see that s-dz2 states provide an almost perfectly

conducting channel in a large energy range. Only far below the

Fermi energy the value drops below 2e2/h, and in the vicinity

of the Fermi energy it rises due to the availability of two

�1 bands (cf. the band structure in Fig. 3). The more localized

dxz-dyz states, on the other hand, possess a much smaller trans-

mission and their contribution is localized in a small energy

window. This effect is even more dramatic for the dxy-dx2−y2

orbitals, which show a very small overlap and hopping matrix

elements leading to a sharp peak in the conductance.

Finally, we turn to the conductance of the Pt monowire as

a function of the stretched bond length shown in Fig. 7. For

the conductance of a perfect Pt wire, we find the expected

step-function shape in which each band contributes with

one conductance quantum G0 per spin within its bandwidth.

Upon increasing the length of a single bond in the wire, the

overlap between the Wannier orbitals across the gap decreases,

especially for the more localized d orbitals, and as a result

the transmission drops dramatically. Accordingly, only the

contribution from the s-dz2 states survives at large gaps,

while the sharp peak originating from the dxy-dx2−y2 orbitals

vanishes above � = 1.82 bohr. Another important result of

this calculation is that the Hamiltonians obtained with MLWFs

and FSWFs provide nearly the same results, i.e., the radial

solutions of the FLAPW potential are evidently a reasonable

choice as FSWFs trial orbitals.

C. Transmission: Spin-orbit coupling

For heavy transition metals such as Pt, spin-orbit coupling

plays an important role and has a significant impact on the

electronic structure. Evidently, the transport properties should
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FIG. 7. (Color online) Conductance for a nonmagnetic Pt

monowire in the scalar-relativistic approximation, i.e., neglecting

spin-orbit coupling, with a single bond stretched by �. The second-

nearest-neighbor approximation has been used for the transport

Hamiltonian. The WFs and hopping matrix elements have been

constructed from a 12-atom supercell and the leads were described

by the locking technique. Curves are shown for MLWFs (solid lines)

and FSWFs (dotted lines) for � = 0.0, 0.34, 0.72, 1.22, 1.82, and

2.52 bohr (from left to right).

be equally affected. A suitable method to describe the quantum

conductance in such systems has to be capable of treating

SOC. The effect of SOC on the electronic structure, namely,

the coupling of the spin quantum number s = 1
2

and angular

momentum quantum number l = 0,1,2, . . . to the total angular

momentum quantum number j = 1
2
, 3

2
, 5

2
, . . . can be seen in

Fig. 8. Compared to the scalar-relativistic calculation, in which

SOC is neglected (Fig. 3), the band structure including SOC
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FIG. 8. (Color online) Band structure of an infinite nonmagnetic

Pt monowire including spin-orbit coupling. (a) Band structure from

the FLAPW calculation (big dots) and using the Hamiltonian

from FSWFs within the first-, second-, and third-nearest-neighbor

approximations. (b) Conductance based on FSWFs for 1st- (dotted

line), 2nd- (dashed line), and 3rd- (solid line) NN approximations.
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FIG. 9. (Color online) Conductance for a nonmagnetic Pt wire

with a single stretched bond dPt + � including spin-orbit coupling

calculated within a 6-atom supercell and using locking to semi-infinite

Pt leads based on the Hamiltonian obtained from MLWFs in the

second-nearest-neighbor approximation. From left to right: one bond

stretched by � = 0.0, 0.34, 0.72, 1.22, 1.82, and 2.52 bohr.

changes significantly (Fig. 8). In the chain geometry, the states

are eigenfunctions to the z component (chain axis) of the

total angular momentum and we can classify the bands by

the absolute value of mj as shown in Fig. 8(a). Thereby,

spin-orbit coupling leads to several avoided crossings in the

band structure, e.g., of a s-dz2 and dxz/dyz band around 3 eV

below the Fermi level. With respect to the scalar-relativistic

band structure, we also observe a significant shift of the dxy and

dx2−y2 bands toward the Fermi energy. As this band touches the

Fermi energy at k = π
a

, the conductance jumps from 4 G0 in

the scalar-relativistic case to a value of 5 G0. This finding

already demonstrates the importance of SOC for quantum

transport calculations in such systems.

The general form of the conductance in presence of SOC

(Fig. 9) changes significantly, too, due to the lifted degenera-

cies of bands with different |mj | values [see Fig. 8(b)]. While

the conductance at the Fermi level is enhanced upon taking

SOC into account, the degeneracy of the dxy and dx2−y2 bands

in the SR case leads to a higher conductance of 6 G0 below the

Fermi energy. Another key difference due to SOC is the larger

number of steps which appear in the conductance as a result

of the anticrossings in the band structure, in particular, in the

energy range of 3 to 1 eV below the Fermi level. In Fig. 9, we

also display the evolution of the conductance upon stretching

a single bond in the Pt monowire. Similar to the SR case,

we observe a rapid decrease of the conductance due to more

localized d orbitals. However, due to the spin-orbit split bands,

there is a more pronounced peak structure in the conductance.

In particular, we find a sharp peak just below the Fermi energy,

which decays more slowly than in the SR calculation where

it is located slightly lower in energy. Our calculations of the

conductance are in good agreement with those obtained based

on fully relativistic ultrasoft pseudopotentials and a scattering

approach to obtain the conductance.47
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IV. Co MONOWIRES

Another important aspect in transport through nanoscale

structures is the effect of spin polarization and magnetic order.

Due to the reduced coordination number in nanostructures,

the density of states is enhanced and, according to the Stoner

model the tendency toward magnetism increases. The reduced

symmetry also results in a much larger magnetocrystalline

anisotropy energy (MAE) as the orbital moments become more

significant. For example, freestanding and suspended chains of

4d- and 5d-transition metals become magnetic and show giant

values of the MAE,70,71 and the effect of colossal magnetic

anisotropy has been reported.72 Here, we demonstrate that

our method allows spin-polarized transport calculations. We

consider a simple model system, i.e., a Co monowire with

a single stretched bond and allow a parallel and antiparallel

alignment of the magnetization on the two Co electrodes. We

calculate the conductance in both configurations and determine

the magnetoresistance as a function of electrode separation.

The calculations in the antiferromagnetic configuration of

the Co monowire can also be compared to calculations

by Smogunov et al. based on the scattering approach and

pseudopotentials.46

A. Magnetoresistance

Compared to the nonmagnetic Pt band structure, the Co

chain exhibits a smaller bandwidth due to more localized 3d

states, and a large exchange splitting (Fig. 10). The exchange

splitting leads to a net spin moment in the unit cell of 2.13 µB .

A good overall accuracy in reproducing this band structure

based on FSWFs can be achieved if we go up to third-nearest-

neighbor hoppings. For the d bands and the s-dz2 bands

around the Fermi energy, even the second-nearest-neighbor

approximation is sufficient. From the spin-split band structure,

we expect a larger conductance in the parallel magnetization
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FIG. 10. (Color online) (a) Majority and (b) minority band

structures for a ferromagnetic Co monowire with dCo = 4.15 bohr

calculated within FLAPW (big dots) and FSWFs in 1st- (dotted lines),

2nd- (dashed lines), and 3rd-NN (solid lines) approximations.
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FIG. 11. (Color online) Conductance between two ferromagnetic

Co monowires separated by a gap � in (a) parallel and in (b)

antiparallel alignment of the magnetization. A supercell of 16 atoms

has been used for the scattering region and the transport Hamiltonian

was constructed based on FSWFs in the second-NN approximation.

From left to right: gap of � = 0.0, 0.45, 1.05, 1.85, and 2.85 bohr.

Upper and lower part of the plots show the spin-up and spin-down

transmission channels, respectively.

alignment due to the overlap between minority bands of �3

and �4 symmetry. This notion is confirmed by the calculated

conductance in the two magnetic configurations as a function

of gap size as shown in Fig. 11. At the Fermi level, we observe

majority and minority spin conductances of Gmaj = e2/h and

Gmin = 6e2/h, respectively, for a perfect ferromagnetic Co

monowire [see Fig. 11(a)]. As the central bond is stretched, the

minority conductance drops rapidly because it originates from

the more localized dxz,yz and dxy,x2−y2 states. The majority

conductance, on the other hand, is due to s-dz2 states and

decays much more slowly.

In the antiparallel alignment [Fig. 11(b)], the conductance

is the same in both spin channels. There is only a small energy

window between 1 and 1.7 eV below the Fermi energy in

which the dxz,yz and dxy,x2−y2 states overlap, and at the Fermi

energy, the conductance is dominated by the s-dz2 states. The

conductance in the antiparallel alignment can be interpreted as

an envelope of spin-up and spin-down transmission functions

calculated for the parallel case as an electron can only be

transmitted if there are states of the same symmetry in both

spin channels. The conductance in this configuration is also in
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good agreement with that reported by Smogunov et al. using

a scattering approach and pseudopotentials.46

Based on the obtained quantum conductance at the Fermi

level, we can calculate the ballistic magnetoresistance (BMR)

upon stretching the central bond. The BMR is defined as

the difference between the conductance in the parallel and

antiparallel alignment divided by the antiparallel conductance:

BMR =
GP(EF ) − GAP(EF )

GAP(EF )
× 100%. (23)

Figure 12 displays the evolution of the spin-resolved conduc-

tance as a function of gap size for the two magnetic configura-

tions. As noted above, the parallel alignment is characterized

by a rapidly decreasing minority spin conductance and a nearly

constant majority spin contribution. However, the minority

spin conductance dominates until the end of the bond length

range which we considered. In the antiparallel alignment, the

conductance of both spin channels is the same and behaves

similar to the majority spin channel of the parallel alignment

as it is due to s-dz2 states. From this analysis of the channel

contribution, we can understand the fast drop of the BMR

found upon stretching (inset of Fig. 12) of the central bond in

the monowire.

V. SPIN-ORBIT SCATTERING AT IMPURITIES

In the previous sections, we applied our quantum trans-

port code to systems with strong spin-orbit coupling (Pt

monowires) and high spin polarization (Co monowires). In

the following, we combine the two effects in order to study

the scattering at impurities in the presence of spin-orbit

coupling. We consider two types of model systems. We begin

with nonmagnetic Pt monowire with a single Co impurity

atom and calculate the dependence of the conductance on

the magnetization direction of the Co atom. An analysis of

the orbital decomposed transmission function allows us to

study the influence of SOC on the different channels. We find

that band mixing due to SOC has a pronounced influence,

in particular, on the contribution from the band with �4

symmetry. As a second system, we consider a ferromagnetic

Co monowire with a single Pt impurity atom and compute the

conductance for the two magnetization directions of the Co

wire, either along the direction of the wire or perpendicular

to it. From our calculations of the conductance including

spin-orbit coupling, we can also determine the ballistic

anisotropic magnetoresistance (BAMR), i.e., the difference of

transmission between a magnetization parallel to the current

and perpendicular to the current.

While our systems are idealized, they can be seen as pro-

totypical for experiments that may be performed for example

by scanning tunneling microscopy in the contact regime7 or

in break junctions.1,10,71 Scalar-relativistic calculations, i.e.,

neglecting SOC, in a similar geometry for a Ni impurity in a

Au monowire have been performed before.73

A. Magnetic impurity in a nonmagnetic wire

We begin our investigation of spin-orbit scattering at an

impurity by considering a single Co atom in a Pt monowire.

This is the simpler of the two systems due to the nonmagnetic

Pt leads. We have already discussed the conductance of Pt

monowires with and without spin-orbit coupling in Sec. III.

Here, we study the conductance for different magnetization

directions of the Co impurity atom in order to calculate the so-

called ballistic anisotropic magnetoresistance, which has been

predicted based on DFT calculations9 and was experimentally

reported for Co break junctions.10

Before we discuss the calculated conductance, we focus

on the magnetic properties of our system. From the DFT

calculations in the scalar-relativistic case, we obtain spin

moments of 2.46 µB for the Co atom which induces Pt spin

moment of a magnitude of up to 0.27 µB , oscillating in sign as

a function of separation from the Co atom. A similar behavior

was found upon including SOC in the calculations for both

magnetization directions, with a Co spin moment of about

2.49 µB . Including spin-orbit interaction in the calculations

gives rise to finite values of the orbital moments of the atoms,

which play an important role in determining the energetically

favorable direction of the magnetization.70 In our system,

the orbital moments of the Co atoms are much larger than

those of the surrounding Pt atoms, and constitute 0.12 µB and

0.19 µB for the magnetization along the chain axis (z) and

perpendicular to it (r), respectively. Accordingly,70 this results

in an energetical preference of the in-chain magnetization

direction over the out-of-chain direction, with a calculated

magnetocrystalline anisotropy energy (MAE) of 4.3 meV per

magnetic atom.

We now turn to the calculated conductance presented in

the three top panels of Fig. 13 for the scalar-relativistic

case and upon including spin-orbit coupling for the two

different magnetization directions. For reference, the orbitally

decomposed conductance and the density of states (DOS) of a

perfect Pt monowire is given in each of the three plots and in the

panels below, respectively. As a general trend, the introduction

of a Co scatterer results in a nonperfect matching between the

spin-split Co 3d states and the more delocalized Pt 5d states
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FIG. 13. (Color online) Conductance of a Pt monowire with a single Co impurity in (a) the scalar-relativistic (SR) approximation and

including spin-orbit coupling (SOC) for a magnetization (b) along the chain axis (z) and (c) perpendicular to it (r). In addition to the total

conductance (black thick line), each panel shows the transmission for a perfect Pt monowire (dashed-dotted line) and orbital decomposed into

the �1 (red dotted line), �3 (blue dashed line), and �4 band (green solid line) contribution. The projection onto the spin-up and spin-down

states is given for two different directions of the y axis, respectively. Below each conductance panel, the density of states (DOS) is displayed

in the corresponding electronic configuration, i.e., SR or SOC, for a perfect Pt monowire, the Pt atom adjacent to the Co impurity, the Co

impurity, and a perfect Co monowire. The DOS is orbital decomposed similarly to the transmission.

(cf. the band structures in Figs. 3 and 10). In all three cases,

a clear signature of the exchange-split Co �3 band can be

observed in the overall conductance, most clearly visible in

the spin and orbital decomposition. As expected, the �4 bands

are shifted toward the Fermi energy upon including spin-orbit

coupling, but due to the energetical mismatch between the Co

and Pt �4 bands in SR and for both magnetization directions

with SOC, this band plays only a minor role in the overall

conductance.

Nevertheless, there is a considerable difference between the

conductance at the Fermi level in the scalar-relativistic case

GSR = 1.40 G0, and upon including SOC either for z mag-

netization G‖ = 2.25 G0, or r magnetization G⊥ = 2.10 G0,

as seen in Fig. 14. The main reason for this large difference

between SR and SOC conductances can be found in the �1

band of SR Pt. In this channel, the DOS is reduced compared to

the SOC cases at the Fermi energy at the Pt nn atoms and there

is a corresponding reduction of the conductance, as shown in

Fig. 13. The difference of G‖ − G⊥ = 0.15 G0 between the

two different magnetization directions can be found in the

larger minority �3-state contribution of the parallel aligned

axis. Here, the SR and the parallel SOC case behave similarly.

The DOS for �3 majority states is small at the Fermi level,
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FIG. 14. (Color online) Conductance around the Fermi level for

a Pt wire with a single Co impurity atom without spin-orbit coupling

(dotted blue line) and including SOC for an in-chain (dashed red line)

and an out-of-chain (solid black line) magnetization direction. The

inset shows the ballistic anisotropic magnetoresistance (BAMR) as

defined by Eq. (24).
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the majority state conductance is reduced in comparison to the

minority state contribution, as a result of the exchange splitting

of the Co scatterer.

Interestingly, this is not the case for the r direction of

the magnetization for which majority and minority channels

contribute equally to the total conductance. This effect also

occurs for the �3 minority channel between −2.8 and −3.9 eV

as well as for the �4 conductance just below the Fermi energy.

While the very sharp spin-up �4 peak in the SR transmission

at −0.7 eV can be traced back to a small spin-up �4 peak in

the DOS of the central Co atom at this energy, this is not the

case for the mentioned regions in case of the r magnetization,

for which no majority �3 and �4 states are present at the

scatterer. The origin of this effect is the broken cylindrical

symmetry when the magnetization points out of chain. This

broken symmetry allows for a hybridization between �1 and

�3 bands with j = 1
2
, as well as between �3 and �4 bands

with j = 3
2
. As a result, an incident electron of j = 1

2
( 3

2
)

can be transmitted into a state with j = 1
2

( 3
2
) of different

orbital character and spin. This channel for scattering is less

effective than the spin-conserving scattering for the in-chain

magnetization, resulting in a larger conductance in this case.

The changes in the ballistic conductance due to ballistic

spin scattering are important for the ballistic anisotropic

magnetoresistance. The BAMR is defined analogously to the

anisotropic magnetoresistance as

BAMR =
G‖ − G⊥

G⊥

× 100%, (24)

where G‖ and G⊥ are the conductances for the magnetization

along the wire axis and perpendicular to it, respectively.9 The

difference of 0.15 G0 at the Fermi level in favor of the parallel

quantization axis due to ballistic spin scattering results in a

small BAMR of the order of 7% (see inset of Fig. 14). A small

shift between the �4 contributions due to a small spin splitting

of those bands for the Pt atom neighboring the Co scatterer

(cf. Fig. 13) results in an oscillatory behavior of the BAMR

when the energy is varied from −0.05 to −0.2 eV, with BAMR

ranging from −20% to 25%.

B. Nonmagnetic impurity in ferromagnetic wire

In the previous example, we have seen that the transmission

can be affected by ballistic spin scattering, leading to a small

BAMR below the Fermi energy and BAMR oscillations due

to a shift in the �4 orbitals of the Pt atom next to the Co

scatterer. In this section, we consider a nonmagnetic scatterer,

a Pt atom, in a ferromagnetic Co monowire. We find that this

situation leads to an enhanced BAMR close to the Fermi level,

which is crossed by the �4 band. In this case, we do not expect

strong ballistic spin scattering because of the magnetic leads

since large exchange splitting prohibits scattering between the

states with opposite spin.

First, we consider the junction in the scalar-relativistic

approximation in order to understand the main impact of

the Pt scatterer on the conductance. While Co atoms in the

leads carry a magnetic moment of 2.13 µB , the Co atoms

in the vicinity of the Pt atom have moments in the range of

2.15–2.20 µB , and the Pt atom itself is spin polarized with

a considerable moment of 0.36 µB . As can be seen in the

orbitally decomposed conductance [Figs. 15(a)–15(c)], the

reduction of the transmission due to the Pt impurity atom

is relatively small compared to the perfect ferromagnetic Co

monowire. We can understand this general behavior from

the fact that the Pt 5d bands possess a broader bandwidth

and thereby allow transmission in the entire regime of the

spin-polarized Co 3d bands [cf. Figs. 3 and 10).

In the s-dz2 channel, the reduction of the transmission is

similarly small for the majority and minority spin contributions

due to the energetic alignment of the spin-split states of the

Co wire with the states of the Pt impurity. In the majority spin

channel, a significant reduction of transmission only occurs

in a region from EF − 2.1 eV to EF − 0.9 eV where the

perfect conductance amounts to G0. In the spin- and orbital-

decomposed density of states [Figs. 15(d) and 15(g)], we also

find two resonances at the Pt impurity located at 2.8 and 2.3 eV

below the Fermi energy in the majority and minority spin

channels, respectively. In the conductance, we observe a Fano-

type line shape due to the coupling of the �1 band to these

resonances.

The conductance from the �3 bands displays only a

reduction at the bottom and top of the band in both spin

channels as the onsite energies of Co and Pt dxz,yz states are

close in energy. The density of states of the Pt atom [Fig. 15(h)]

shows that the dxz,yz states are spin split, carry a significant

part of the Pt moment, and align well with the �3 bands in

the Co monowire, resulting in an efficient transport channel.

The most severe change in the conductance upon introducing

a Pt impurity occurs in the �4 band. Here, we observe a large

decrease due to scattering at the Pt impurity. For both the

dxz,yz and dxy,x2−y2 channels, bound states on the Pt atom can

be found due to the lower onsite potential at the Pt site. For the

�3 symmetry, there are such states at −4.1 eV for the majority

band and at −3.3 eV for both spin channels, which do not

contribute to the conduction as they are below the �3 band of

the Co leads. For the �4 symmetry, there are majority states

around −2.5 eV and a paired state at −2 eV with respect

to the Fermi level, not contributing to the majority channel

transmission.

�4 electrons are only transmitted in the small overlap

region around −2.1 eV for majority and around Fermi level

for minority states, where a very narrow band is formed in

both cases. The shape of the transmission function follows

the two-peak (majority band) and three-peak (minority band)

shapes of the DOS of the central Pt atom.

Now, we turn to the effect of spin-orbit coupling on the

magnetic and transport properties of the Co-Pt-Co junction.

For the perfect Co monowire, we found a magnetocrystalline

anisotropy energy, i.e., the difference in energy for the magne-

tization in the chain axis and perpendicular to it, of 0.8 meV per

magnetic atom in favor of an out-of-chain magnetization and

orbital moments of 0.17 µB for the out-of-chain and 0.22 µB

for in-chain direction. Upon introducing the Pt atom, this value

is reduced to 0.5 meV per magnetic atom, which is consistent

with our observation in the previous section for a Pt-Co-Pt

junction favoring the in-chain direction. The magnetic moment

of the Pt atom is 0.36 µB for both magnetization directions,

and we find similar orbital moments of 0.09 µB (out of chain)

and 0.10 µB (in chain). Characteristically, as in the case of the

Co leads, the orbital moments of the Co atoms adjacent to the
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FIG. 15. (Color online) (a)–(c) Orbital decomposition of transmission through a ferromagnetic Co wire with a single Pt impurity (solid

lines) and a perfect Co wire (dashed lines) for the �1, �3, and �4 channels, respectively, for spin up (black, upper part) and spin down (red,

lower part). (d)–(f) Density of states of the Co leads orbitally decomposed for spin-up (dashed black lines, upper part) and spin-down (red

dashed lines, lower part) states. (g)–(i) Orbitally decomposed DOS of the Pt impurity atom, for spin up (black, upper part) and spin down (red,

lower part).

Pt impurity are significantly larger for the in-chain direction

(reaching as much as 0.53 µB for the nearest Co atom) than

for the out-of-chain direction (at most 0.2 µB). This means

that the out-of-chain easy magnetization axis in our scattering

region is mainly due to the Co atoms.

For the transport properties including SOC, the bands

with �3 and �4 symmetry are essential. Depending on the

quantization axis defined by the magnetization direction, the

degeneracy of these bands is lifted. In contrast to the Pt-Co-Pt

system, the Co electrodes are ferromagnetic and therefore the

splitting in the steplike conductance in the perfect Co wires

changes upon switching the quantization axis from along the

chain axis to perpendicular to it.

As can be seen from Fig. 16, changing the magnetization

direction in a perfect infinite Co chain leads to a reduction

of the transmission from 3.5 G0 (along the chain) to 1.5 G0

(perpendicular to the chain) in a very small energy window

around the Fermi energy, which results in a huge value of

the ballistic anisotropic magnetoresistance of 133%.10 In a

realistic situation, however, such values of the anisotropic

magnetoresistance can be hardly achieved, owing to the

destruction of perfect conducting channels by imperfections,

impurities, and disorder.

In the case of a Co chain with a Pt impurity, similarly to

the scalar-relativistic case, we observe a reduction by roughly

a factor of 2 in the overall conductance over the entire energy

range due to the less efficient coupling between the Co wire and

the Pt impurity compared to an perfect Co wire, especially for

the �3 and �4 orbitals. At the Fermi energy, we find majority

and minority spin contributions from the �1 band of about 0.5

and 1.0 G0 for both magnetic directions. Only the minority

states of the other two orbital symmetries are present due to the

exchange splitting. The minority �3 band contributes almost

1.0 G0 for the in-chain magnetization, while it reveals a large

dip at EF for the out-of-chain magnetization. Accordingly,

the �4-band conductance also changes significantly upon

switching the magnetization direction, owing to the changes

in the details of hybridization between �3 and �4 states when

the direction of the magnetization is changed [see Figs. 16(b)

and 13 (cf. DOS of the Co monowires for the two different

magnetization directions)]. These changes in the energetic

structure of �3 and �4 states lead to a large difference between

the in-chain and out-of-chain conductances, also visible for the

pure Co chain in the Fig. 16.

In Fig. 17, the conductance is displayed in a small

energy window around the Fermi energy for the two different

magnetization directions. It is apparent that the changes arise

due to the modifications of the �4-band conductance between

Fermi level and −0.05 eV, and �3-band conductance around

EF and −0.15 eV, which are subject to different band mixing

from spin-orbit coupling. As a result of the fine structure of the

�4 and �3 conductances [see Fig. 16(b)], the BAMR which
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FIG. 16. (Color online) Conductance including SOC for a Co

monowire with a Pt impurity atom for (a) magnetization along the

wire axis and (b) perpendicular to the axis. The decomposition of

transmission into �1 (dotted red lines), �3 (dashed blue lines), and

�4 (solid green lines) channels for majority spin (positive y axis) and

minority spin (negative y axis) shows the presence of a �4 minority

band channel at the Fermi level. Black dashed-dotted lines display

the transmission of the perfect infinite Co leads.

we obtain, shown in the inset of Fig. 17, displays a strong

variation with energy. Compared to the BAMR of a perfect Co

MW of 133%, a Pt scatterer reduces this effect to 80%–100%,
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FIG. 17. (Color online) Conductance around the Fermi level for

a Co monowire with a Pt impurity atom in the scalar-relativistic ap-

proximation (blue dotted line) and including SOC for a magnetization

along the chain axis (dashed red line) and perpendicular to the axis

of the wire (solid black line). The inset shows the BAMR as defined

by Eq. 17 for the Co monowire with a Pt impurity (solid black line)

and for a perfect infinite Co monowire (dashed-dotted green line).

which is still considerably high. An enhanced BAMR can be

found for the second peak below the Fermi energy, where a

�4-conduction peak for the in-chain direction in coincidence

with a �3-conduction depletion result in a BAMR increase

from 40% for the perfect Co MW to 60%–100% when a Pt

scatterer is introduced.

VI. SUMMARY

We have implemented the Landauer-Büttiker method to cal-

culate the ballistic electron transport through one-dimensional

nanoscale junctions based on density functional theory

calculations within the full-potential linearized augmented

(FLAPW) method. In order to apply the efficient Green’s

function method to calculate the conductance, we have mapped

the extended Bloch states obtained from the FLAPW method

to the minimal basis set of localized Wannier functions and

constructed the Hamiltonian for the open system. With our

approach, it is feasible to calculate ballistic transport through

one-dimensional nanoscale systems including magnetism and

spin-orbit coupling with the accuracy and flexibility of the

FLAPW method.

We apply our method to calculate the conductance of non-

magnetic Pt monowires with a single stretched bond, including

spin-orbit coupling. Already, this simple example shows the

key impact of SOC for systems containing heavy transition

metals. As a second example, we considered a Co monowire

and studied the magnetoresistance upon stretching the wire at

a single bond. The decomposition of the transmission into the

channels of different orbital symmetry shows the dominant

contribution of s and dz2 states as one moves from the contact

to the tunnel regime. Finally, we studied the effect of spin-orbit

scattering at an impurity atom in a monowire. We considered

two model cases: (i) a magnetic atom in a nonmagnetic wire,

Co in a Pt monowire, and (ii) a nonmagnetic heavy element

in a ferromagnetic wire, Pt in a Co monowire. We observed

for both cases a distinct dependence of the conductance on the

magnetization direction with respect to the wire axis.

We found for a Co impurity in a Pt chain that due to the

broken cylindrical symmetry for an out-of-chain magnetiza-

tion direction, the hybridization between states of different

angular character and spin but with identical quantum number

j leads to scattering processes that do not conserve spin. Those

ballistic spin-scattering processes are resulting into a BAMR

of 7%. The relatively moderate values are caused by the large

background conductance from bands originating from s − dz2

and dxz,yz states, which are not modified much upon switching

the magnetization. On the other hand, for a Pt impurity in a

Co chain, we find that the presence of an impurity, although

reducing somewhat the BAMR of the pure Co chain, still

leads to values of BAMR of about 100%, which originates

from hybridization between the �3 and �4 states moderated

via SOC by the direction of the magnetization.
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APPENDIX: COMPUTATIONAL DETAILS

1. Pt monowires

Nonmagnetic (NM) 6- and 12-atom-supercell calculations

with an interatomic distance of dPt = 4.48 bohr and the

central bond stretched by � = 0.0, 0.34, 0.72, 1.22, 1.82,

and 2.52 bohr. We applied the generalized gradient approx-

imation (GGA) to the exchange-correlation potential.74 For

calculations in the scalar-relativistic (SR) approximation, the

irreducible part of the 1D Brillouin zone (BZ) was sampled by

6–10 k points depending on the size of the supercell. For the

6-atom supercell, we also performed calculations including

spin-orbit coupling in second variation. For calculations with

SOC, the whole 1D BZ was sampled by 24 k points. In

all calculations, Gmax was chosen to be 3.7 bohr−1, which

corresponds to approximately 200 basis functions per atom.

The diameter of the cylindrical vacuum Dvac, and the value of

the in-plane auxiliary lattice constant D̃,54 were set to 5.0 and

7.3 bohr, respectively.

For the conductance calculations, we applied the locking

technique to a perfect monowire to describe the semi-infinite

leads (see Sec. II D). In the SR approximation, FSWFs and

MLWFs were generated on a mesh of 16 k points in the whole

BZ starting from one 4s and 5 3d orbitals per atom in the

supercell, based on solutions of the radial equation of the

first-principles potential as trial functions. In the calculations

including SOC, MLWFs were generated on a 24 k-point mesh

in the whole BZ based on 2 radial 4s and 10 radial 3d orbitals

per atom, based on solutions of the radial equation of the

first-principles potential as trial functions, due to the coupled

spin channels. The energy bands were disentangled using the

procedure described in Ref. 65. For the SR calculations, the

lowest 80 eigenstates are needed for 72 WFs for the 12-atom

supercell and the lowest 44 eigenvalues per k point for 36 WFs

for the 6-atom-supercell calculations. With SOC, the lowest

80 eigenstates per k point for 72 WFs were used.

2. Co monowires

Calculations with a lattice constant of dCo = 4.15 bohr and

a central stretched bond with stretching � = 0.0, 0.45, 1.05,

1.85, and 2.85 bohr. Two collinear magnetic configurations

of the Co monowire are considered, parallel or antiparallel

alignment of the Co spins on the left and on the right sides of

the gap, described by performing two calculations: An 8-atom

supercell constructed from two 4-spin blocks separated by

a gap and aligned in parallel (up), while in order to mimic

the antiparallel alignment, we considered 16 atoms in the

supercell with 4-spin (up), 8-spin (down), and 4-spin (up)

blocks, separated by two gaps with the spins antiparallel to

each other at each side of the gap.

The perfect lead ferromagnetic Co monowire was calcu-

lated with 24 k points in the whole BZ, using the Gmax of

4.1 bohr−1 (≈220 basis functions per atom). For both 8-

and 16-atom-supercell calculations, the irreducible part of

the 1D Brillouin zone was sampled by 8 k points and Gmax

was chosen to be 3.7 bohr−1, resulting in approximately 210

basis functions per atom. The vacuum parameters Dvac and

D̃ constituted 4.3 and 6.6 bohr, respectively, in all cases.

The exchange-correlation potential was treated within the

GGA.74 For all quantum conductance calculations, the locking

technique (see Sec. II D) to a perfect FM Co monowire was

used. As trial orbitals for the FSWFs, 6 s and d orbitals per

atom and spin in the supercell were used, based on solutions

of the radial equation of the first-principles potential. For the

disentanglement procedure,65 the lowest 58 (110) eigenstates

per k point were used to obtain the 48 (96) WFs in the 8- (16-)

atom-supercell calculation.

3. Scattering on impurities

A 9-atom supercell was used for the scattering region

consisting of one impurity atom (Pt or Co) and four monowire

atoms (Co or Pt) on both sides. The interatomic distance was

chosen as dCo = 4.15 bohr for the Co monowire with a Pt

impurity and as dPt = 4.48 bohr for the Pt monowire with a

Co impurity. The exchange-correlation potential was treated

within the GGA,74 and SOC was included in second variation.

All calculations were performed in the scalar-relativistic

approximation and for two different directions of the mag-

netization with SOC, along the chain axis and perpendicular

to it. The 1D Brillouin zone was sampled by 16 k points and

Gmax was set to 3.9 bohr−1, resulting in approximately 175

(190) basis functions per atom for the Co (Pt) monowire with

a Pt (Co) impurity. For the case of an isolated Pt impurity,

the leads were described by a Co monowire in a 3-atom unit

cell in either the SR approximation or including SOC for the

magnetization direction along the wire axis or perpendicular

to it. The BZ was sampled by 24 k points and Gmax was set

to 4.1 bohr−1, resulting in approximately 210 basis functions

per atom. For Pt monowire with a Co impurity, the lead’s

electronic structure was obtained from calculations of perfect

Pt monowires. The vacuum parameters for all cases constituted

4.3 and 6.6 bohr for Dvac and D̃, respectively.

For all quantum conductance calculations, the locking tech-

nique was used and the third-nearest-neighbor approximation

was employed. In the SR case, FSWFs were generated on

a 16 k-point mesh in the whole 1D BZ with one s and

five d orbitals per atom and spin, based on solutions of

the radial equation of the first-principles potential. For the

disentanglement procedure,65 the lowest 64 (62) eigenvalues

per k point for 54 (54) WFs for Pt (Co) impurities in Co (Pt)

monowires were considered. The Pt and Co lead WFs were

constructed as described in Secs. 1 and 2 in this case. With

SOC, the FSWFs were generated on a 16 k-point mesh in the

whole 1D BZ with 2 s and 10 d orbitals per atom, based on

solutions of the radial equation of the first-principles potential.

For disentanglement,65 the lowest 116 eigenstates per k point

for 108 WFs were used. The WFs for the semi-infinite Co

leads were generated on a 24 k-point mesh with the same

trial functions as those used for the atoms inside the scattering

region, while for disentanglement, the lowest 26 eigenvalues

per k point for 18 WFs per spin (SR) and the lowest 44

eigenvalues per k point for 36 WFs (SOC) were used. The

Pt lead WFs were constructed as described in Sec. I.
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