000022142 001__ 22142
000022142 005__ 20230426083035.0
000022142 0247_ $$2DOI$$a10.1103/PhysRevB.85.094435
000022142 0247_ $$2WOS$$aWOS:000302170000003
000022142 0247_ $$2Handle$$a2128/10855
000022142 0247_ $$2altmetric$$aaltmetric:580765
000022142 037__ $$aPreJuSER-22142
000022142 041__ $$aeng
000022142 082__ $$a530
000022142 084__ $$2WoS$$aPhysics, Condensed Matter
000022142 1001_ $$0P:(DE-HGF)0$$aKamba, S.$$b0
000022142 245__ $$aMagnetodielectric effect and phonon properties of compressively strained EuTiO3 thin films deposited on (001)(LaAlO3)0.29-(SrAl1/2Ta1/2O3)0.71
000022142 260__ $$aCollege Park, Md.$$bAPS$$c2012
000022142 300__ $$a094435
000022142 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022142 3367_ $$2DataCite$$aOutput Types/Journal article
000022142 3367_ $$00$$2EndNote$$aJournal Article
000022142 3367_ $$2BibTeX$$aARTICLE
000022142 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022142 3367_ $$2DRIVER$$aarticle
000022142 440_0 $$04919$$aPhysical Review B$$v85$$x1098-0121$$y9
000022142 500__ $$3POF3_Assignment on 2016-02-29
000022142 500__ $$aThis work was supported by the Czech Science Foundation (Projects No. 202/09/0682 and No. P204/12/1163). J.H. Lee and D.G. Schlom were supported by the National Science Foundation through the MRSEC program (Grant No. DMR-1120296). T. Birol and C.J. Fennie were supported by the DOE-BES under Grant No. DE-SCOO02334. Part of this work was supported by the Young Investigators Group Programme of the Helmholtz Association, Germany, Contract No. VH-NG-409. K.Z.R. and M.L. gratefully acknowledge the support of Julich Supercomputing Centre. We are grateful to E. Santava for help with the magnetic measurements.
000022142 520__ $$aCompressively strained epitaxial (001) EuTiO3 thin films of tetragonal symmetry have been deposited on (001) (LaAlO3)(0.29)-(SrAl1/2Ta1/2O3)(0.71) (LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons of the films have been investigated as a function of temperature and magnetic field by means of infrared reflectance spectroscopy. All three in-plane polarized infrared active phonons show strongly stiffened frequencies compared to bulk EuTiO3 in accordance with first-principles calculations. The phonon frequencies exhibit gradual softening on cooling, leading to an increase in static permittivity. Additional polar phonon with frequency near the TO1 soft mode was detected below 150 K. This mode coupled with the TO1 mode was assigned as the optical phonon from the Brillouin zone edge, which is activated in infrared spectra due to an antiferrodistortive phase transition and due to simultaneous presence of polar and/or magnetic nanoclusters. In the antiferromagnetic phase, we have observed a remarkable softening of the lowest-frequency polar phonon under an applied magnetic field, which qualitatively agrees with first-principles calculations. This demonstrates the strong spin-phonon coupling in EuTiO3, which is responsible for the pronounced dependence of its static permittivity on magnetic field in the antiferromagnetic phase.
000022142 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022142 542__ $$2Crossref$$i2012-03-30$$uhttp://link.aps.org/licenses/aps-default-license
000022142 542__ $$2Crossref$$i2013-03-30$$uhttp://link.aps.org/licenses/aps-default-accepted-manuscript-license
000022142 588__ $$aDataset connected to Web of Science
000022142 650_7 $$2WoSType$$aJ
000022142 7001_ $$0P:(DE-HGF)0$$aGoian, V.$$b1
000022142 7001_ $$0P:(DE-HGF)0$$aOrlita, M.$$b2
000022142 7001_ $$0P:(DE-HGF)0$$aNuzhnyy, D.$$b3
000022142 7001_ $$0P:(DE-HGF)0$$aLee, J. H.$$b4
000022142 7001_ $$0P:(DE-HGF)0$$aSchlom, D. G.$$b5
000022142 7001_ $$0P:(DE-Juel1)VDB106374$$aRushchanskii, K. Z.$$b6$$uFZJ
000022142 7001_ $$0P:(DE-Juel1)VDB37180$$aLezaic, M.$$b7$$uFZJ
000022142 7001_ $$0P:(DE-HGF)0$$aBirol, T.$$b8
000022142 7001_ $$0P:(DE-HGF)0$$aFennie, C. J.$$b9
000022142 7001_ $$0P:(DE-HGF)0$$aGemeiner, P.$$b10
000022142 7001_ $$0P:(DE-HGF)0$$aDkhil, B.$$b11
000022142 7001_ $$0P:(DE-HGF)0$$aBovtun, V.$$b12
000022142 7001_ $$0P:(DE-HGF)0$$aKempa, M.$$b13
000022142 7001_ $$0P:(DE-HGF)0$$aHlinka, J.$$b14
000022142 7001_ $$0P:(DE-HGF)0$$aPetzelt, J.$$b15
000022142 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.85.094435$$bAmerican Physical Society (APS)$$d2012-03-30$$n9$$p094435$$tPhysical Review B$$v85$$x1098-0121$$y2012
000022142 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.85.094435$$gVol. 85, p. 094435$$n9$$p094435$$q85<094435$$tPhysical review / B$$v85$$x1098-0121$$y2012
000022142 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.85.094435
000022142 8564_ $$uhttps://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.pdf$$yOpenAccess
000022142 8564_ $$uhttps://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.gif?subformat=icon$$xicon$$yOpenAccess
000022142 8564_ $$uhttps://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000022142 8564_ $$uhttps://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000022142 8564_ $$uhttps://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000022142 909CO $$ooai:juser.fz-juelich.de:22142$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000022142 9141_ $$y2012
000022142 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022142 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000022142 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022142 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022142 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022142 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022142 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022142 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022142 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022142 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022142 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022142 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022142 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022142 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022142 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000022142 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000022142 970__ $$aVDB:(DE-Juel1)138438
000022142 980__ $$aVDB
000022142 980__ $$aConvertedRecord
000022142 980__ $$ajournal
000022142 980__ $$aI:(DE-Juel1)IAS-1-20090406
000022142 980__ $$aI:(DE-Juel1)PGI-1-20110106
000022142 980__ $$aUNRESTRICTED
000022142 9801_ $$aFullTexts
000022142 981__ $$aI:(DE-Juel1)PGI-1-20110106
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730902920554
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.267602
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09331
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature10219
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1708549
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2799
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.85.104109
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0365110X53000156
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.212102
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.054415
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.81.064426
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/80/27002
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjb/e2009-00205-5
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.214421
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3133351
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1023/A:1021213002432
000022142 999C5 $$1F. Gervais$$2Crossref$$oF. Gervais Infrared and Millimeter Waves 1983$$tInfrared and Millimeter Waves$$y1983
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3537835
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.jmmm.2006.10.839
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3072598
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00150198708227912
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1146/annurev.matsci.37.061206.113016
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0375-9601(67)90332-5
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.19.1176
000022142 999C5 $$1G. A. Samara$$2Crossref$$oG. A. Samara Solid State Physics, Advances in Research and Applications 1981$$tSolid State Physics, Advances in Research and Applications$$y1981
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.38.11985
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.144430
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.100403
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.177205
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/14786430802653410
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10832-008-9494-2
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02773
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.366925
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.21.16
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.64.184111
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.66.235406
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3271179
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.84.184114
000022142 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/01411590500476438