001     22142
005     20230426083035.0
024 7 _ |a 10.1103/PhysRevB.85.094435
|2 DOI
024 7 _ |a WOS:000302170000003
|2 WOS
024 7 _ |a 2128/10855
|2 Handle
024 7 _ |a altmetric:580765
|2 altmetric
037 _ _ |a PreJuSER-22142
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Kamba, S.
|b 0
245 _ _ |a Magnetodielectric effect and phonon properties of compressively strained EuTiO3 thin films deposited on (001)(LaAlO3)0.29-(SrAl1/2Ta1/2O3)0.71
260 _ _ |a College Park, Md.
|b APS
|c 2012
300 _ _ |a 094435
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 85
|x 1098-0121
|y 9
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work was supported by the Czech Science Foundation (Projects No. 202/09/0682 and No. P204/12/1163). J.H. Lee and D.G. Schlom were supported by the National Science Foundation through the MRSEC program (Grant No. DMR-1120296). T. Birol and C.J. Fennie were supported by the DOE-BES under Grant No. DE-SCOO02334. Part of this work was supported by the Young Investigators Group Programme of the Helmholtz Association, Germany, Contract No. VH-NG-409. K.Z.R. and M.L. gratefully acknowledge the support of Julich Supercomputing Centre. We are grateful to E. Santava for help with the magnetic measurements.
520 _ _ |a Compressively strained epitaxial (001) EuTiO3 thin films of tetragonal symmetry have been deposited on (001) (LaAlO3)(0.29)-(SrAl1/2Ta1/2O3)(0.71) (LSAT) substrates by reactive molecular-beam epitaxy. Enhancement of the Neel temperature by 1 K with 0.9% compressive strain was revealed. The polar phonons of the films have been investigated as a function of temperature and magnetic field by means of infrared reflectance spectroscopy. All three in-plane polarized infrared active phonons show strongly stiffened frequencies compared to bulk EuTiO3 in accordance with first-principles calculations. The phonon frequencies exhibit gradual softening on cooling, leading to an increase in static permittivity. Additional polar phonon with frequency near the TO1 soft mode was detected below 150 K. This mode coupled with the TO1 mode was assigned as the optical phonon from the Brillouin zone edge, which is activated in infrared spectra due to an antiferrodistortive phase transition and due to simultaneous presence of polar and/or magnetic nanoclusters. In the antiferromagnetic phase, we have observed a remarkable softening of the lowest-frequency polar phonon under an applied magnetic field, which qualitatively agrees with first-principles calculations. This demonstrates the strong spin-phonon coupling in EuTiO3, which is responsible for the pronounced dependence of its static permittivity on magnetic field in the antiferromagnetic phase.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2012-03-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
542 _ _ |i 2013-03-30
|2 Crossref
|u http://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Goian, V.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Orlita, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Nuzhnyy, D.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Lee, J. H.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Schlom, D. G.
|b 5
700 1 _ |0 P:(DE-Juel1)VDB106374
|a Rushchanskii, K. Z.
|b 6
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB37180
|a Lezaic, M.
|b 7
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Birol, T.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Fennie, C. J.
|b 9
700 1 _ |0 P:(DE-HGF)0
|a Gemeiner, P.
|b 10
700 1 _ |0 P:(DE-HGF)0
|a Dkhil, B.
|b 11
700 1 _ |0 P:(DE-HGF)0
|a Bovtun, V.
|b 12
700 1 _ |0 P:(DE-HGF)0
|a Kempa, M.
|b 13
700 1 _ |0 P:(DE-HGF)0
|a Hlinka, J.
|b 14
700 1 _ |0 P:(DE-HGF)0
|a Petzelt, J.
|b 15
773 1 8 |a 10.1103/physrevb.85.094435
|b American Physical Society (APS)
|d 2012-03-30
|n 9
|p 094435
|3 journal-article
|2 Crossref
|t Physical Review B
|v 85
|y 2012
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.85.094435
|g Vol. 85, p. 094435
|0 PERI:(DE-600)2844160-6
|n 9
|q 85<094435
|p 094435
|t Physical review / B
|v 85
|y 2012
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.85.094435
856 4 _ |u https://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22142/files/PhysRevB.85.094435.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:22142
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
970 _ _ |a VDB:(DE-Juel1)138438
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
999 C 5 |a 10.1080/00018730902920554
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.267602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature09331
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature10219
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1708549
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2799
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.85.104109
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1107/S0365110X53000156
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.212102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.054415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.81.064426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1209/0295-5075/80/27002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1140/epjb/e2009-00205-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.214421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3133351
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1023/A:1021213002432
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 F. Gervais
|y 1983
|2 Crossref
|t Infrared and Millimeter Waves
|o F. Gervais Infrared and Millimeter Waves 1983
999 C 5 |a 10.1063/1.3537835
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2006.10.839
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3072598
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/00150198708227912
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1146/annurev.matsci.37.061206.113016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0375-9601(67)90332-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.19.1176
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 G. A. Samara
|y 1981
|2 Crossref
|t Solid State Physics, Advances in Research and Applications
|o G. A. Samara Solid State Physics, Advances in Research and Applications 1981
999 C 5 |a 10.1103/PhysRevB.38.11985
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.144430
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.100403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.177205
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/14786430802653410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10832-008-9494-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature02773
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.366925
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.21.16
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.64.184111
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.235406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3271179
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.84.184114
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1080/01411590500476438
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21