001     22169
005     20200423203244.0
024 7 _ |2 pmid
|a pmid:22431727
024 7 _ |2 pmc
|a pmc:PMC3351333
024 7 _ |2 DOI
|a 10.1074/jbc.M111.316729
024 7 _ |2 WOS
|a WOS:000304030900020
024 7 _ |a altmetric:841541
|2 altmetric
037 _ _ |a PreJuSER-22169
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Ferrante, P.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a LHCBM1 and LHCBM2/7 polypeptides, components of the major LHCII complex, have distinct functional roles in the photosynthetic antenna system of Chlamydomonas reinhardtii
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2012
300 _ _ |a 16276 - 16288
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Biological Chemistry
|x 0021-9258
|0 3091
|y 20
|v 287
500 _ _ |a This work was supported by the Italian Ministry of Agriculture, Hydrobio project, and by Euopean Union Project 245070 FP7-KBBE-2009-3 SUNBIOPATH.
520 _ _ |a The photosystem II antenna of Chlamydomonas reinhardtii is composed of monomeric and trimeric complexes, the latter encoded by LHCBM genes. We employed artificial microRNA technology to specifically silence the LHCBM2 and LHCBM7 genes, encoding identical mature polypeptides, and the LHCBM1 gene. As a control, we studied the npq5 mutant, deficient in the LHCBM1 protein. The organization of LHCII complexes, functional antenna size, capacity for photoprotection, thermal energy dissipation and state transitions, and resistance to reactive oxygen species was studied in the various genotypes. Silencing of the LHCBM2/7 genes resulted in a decrease of an LHCII protein with an apparent molecular mass of 22 kDa, whereas silencing/lack of LHCBM1 caused the decrease/disappearance of a 23-kDa protein. A decrease in the abundance of trimeric LHCII complexes and in functional antenna size was observed in both LHCBM2/7 and LHCBM1 knockouts. In agreement with previous data, depletion of LHCBM1 decreased the capacity for excess energy dissipation but not the ability to perform state transitions. The opposite was true for LHCBM2/7, implying that this polypeptide has a different functional role from LHCBM1. The abundance of LHCBM1 and LHCBM2/7 is in both cases correlated with resistance to superoxide anion, whereas only LHCBM1 is also involved in singlet oxygen scavenging. These results suggest that different LHCBM components have well defined, non-redundant functions despite their high homology, implying that engineering of LHCBM proteins can be an effective strategy for manipulating the light harvesting system of Chlamydomonas reinhardtii.
536 _ _ |a Terrestrische Umwelt
|0 G:(DE-Juel1)FUEK407
|c P24
|2 G:(DE-HGF)
|x 0
536 _ _ |a SUNBIOPATH - Towards a better sunlight to biomass conversion efficiency in microalgae (245070)
|0 G:(EU-Grant)245070
|c 245070
|x 1
|f FP7-KBBE-2009-3
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: enzymology
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: genetics
650 _ 2 |2 MeSH
|a Gene Silencing
650 _ 2 |2 MeSH
|a MicroRNAs: genetics
650 _ 2 |2 MeSH
|a MicroRNAs: metabolism
650 _ 2 |2 MeSH
|a Photosystem II Protein Complex: genetics
650 _ 2 |2 MeSH
|a Photosystem II Protein Complex: metabolism
650 _ 2 |2 MeSH
|a Plant Proteins: genetics
650 _ 2 |2 MeSH
|a Plant Proteins: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a MicroRNAs
650 _ 7 |0 0
|2 NLM Chemicals
|a Photosystem II Protein Complex
650 _ 7 |0 0
|2 NLM Chemicals
|a Plant Proteins
650 _ 7 |a J
|2 WoSType
700 1 _ |a Ballottari, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Bonente, G.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Giuliano, G.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Bassi, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB38860
773 _ _ |a 10.1074/jbc.M111.316729
|g Vol. 287, p. 16276 - 16288
|p 16276 - 16288
|q 287<16276 - 16288
|0 PERI:(DE-600)1474604-9
|t The @journal of biological chemistry
|v 287
|y 2012
|x 0021-9258
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3351333
856 4 _ |u https://juser.fz-juelich.de/record/22169/files/FZJ-22169.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:22169
|p openaire
|p VDB
|p ec_fundedresources
913 1 _ |a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |k IBG-2
|l Pflanzenwissenschaften
|g IBG
|0 I:(DE-Juel1)IBG-2-20101118
|x 0
970 _ _ |a VDB:(DE-Juel1)138494
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21