001     22170
005     20200423203244.0
024 7 _ |2 pmid
|a pmid:22205699
024 7 _ |2 pmc
|a pmc:PMC3285353
024 7 _ |2 DOI
|a 10.1074/jbc.M111.304279
024 7 _ |2 WOS
|a WOS:000300638000058
024 7 _ |a altmetric:21808344
|2 altmetric
037 _ _ |a PreJuSER-22170
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Bonente, G.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Acclimation of Chlamydomonas reinhardtii to different growth irradiances
260 _ _ |a Bethesda, Md.
|b Soc.
|c 2012
300 _ _ |a 5833 - 5847
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Biological Chemistry
|x 0021-9258
|0 3091
|y 8
|v 287
500 _ _ |a This work was supported by European Union Project 245070 FP7-KBBE-2009-3 SUNBIOPATH.
520 _ _ |a We report on the changes the photosynthetic apparatus of Chlamydomonas reinhardtii undergoes upon acclimation to different light intensity. When grown in high light, cells had a faster growth rate and higher biomass production compared with low and control light conditions. However, cells acclimated to low light intensity are indeed able to produce more biomass per photon available as compared with high light-acclimated cells, which dissipate as heat a large part of light absorbed, thus reducing their photosynthetic efficiency. This dissipative state is strictly dependent on the accumulation of LhcSR3, a protein related to light-harvesting complexes, responsible for nonphotochemical quenching in microalgae. Other changes induced in the composition of the photosynthetic apparatus upon high light acclimation consist of an increase of carotenoid content on a chlorophyll basis, particularly zeaxanthin, and a major down-regulation of light absorption capacity by decreasing the chlorophyll content per cell. Surprisingly, the antenna size of both photosystem I and II is not modulated by acclimation; rather, the regulation affects the PSI/PSII ratio. Major effects of the acclimation to low light consist of increased activity of state 1 and 2 transitions and increased contributions of cyclic electron flow.
536 _ _ |a Terrestrische Umwelt
|0 G:(DE-Juel1)FUEK407
|c P24
|2 G:(DE-HGF)
|x 0
536 _ _ |a SUNBIOPATH - Towards a better sunlight to biomass conversion efficiency in microalgae (245070)
|0 G:(EU-Grant)245070
|c 245070
|x 1
|f FP7-KBBE-2009-3
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adaptation, Physiological: radiation effects
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: growth & development
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: metabolism
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: physiology
650 _ 2 |2 MeSH
|a Chlamydomonas reinhardtii: radiation effects
650 _ 2 |2 MeSH
|a Darkness
650 _ 2 |2 MeSH
|a Dose-Response Relationship, Radiation
650 _ 2 |2 MeSH
|a Electron Transport: radiation effects
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Light-Harvesting Protein Complexes: metabolism
650 _ 2 |2 MeSH
|a Photosynthesis: radiation effects
650 _ 2 |2 MeSH
|a Photosystem I Protein Complex: metabolism
650 _ 2 |2 MeSH
|a Photosystem II Protein Complex: metabolism
650 _ 2 |2 MeSH
|a Pigments, Biological: metabolism
650 _ 7 |0 0
|2 NLM Chemicals
|a Light-Harvesting Protein Complexes
650 _ 7 |0 0
|2 NLM Chemicals
|a Photosystem I Protein Complex
650 _ 7 |0 0
|2 NLM Chemicals
|a Photosystem II Protein Complex
650 _ 7 |0 0
|2 NLM Chemicals
|a Pigments, Biological
650 _ 7 |a J
|2 WoSType
700 1 _ |a Pippa, S.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Castellano, S.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Bassi, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB38860
700 1 _ |a Ballottari, M.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1074/jbc.M111.304279
|g Vol. 287, p. 5833 - 5847
|p 5833 - 5847
|q 287<5833 - 5847
|0 PERI:(DE-600)1474604-9
|t The @journal of biological chemistry
|v 287
|y 2012
|x 0021-9258
856 7 _ |2 Pubmed Central
|u http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3285353
856 4 _ |u https://juser.fz-juelich.de/record/22170/files/FZJ-22170.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:22170
|p openaire
|p VDB
|p ec_fundedresources
913 1 _ |a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
920 1 _ |k IBG-2
|l Pflanzenwissenschaften
|g IBG
|0 I:(DE-Juel1)IBG-2-20101118
|x 0
970 _ _ |a VDB:(DE-Juel1)138495
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21