000022303 001__ 22303
000022303 005__ 20230426083035.0
000022303 0247_ $$2DOI$$a10.1103/PhysRevB.85.014402
000022303 0247_ $$2WOS$$aWOS:000298861900001
000022303 0247_ $$2Handle$$a2128/10852
000022303 037__ $$aPreJuSER-22303
000022303 041__ $$aeng
000022303 082__ $$a530
000022303 084__ $$2WoS$$aPhysics, Condensed Matter
000022303 1001_ $$0P:(DE-HGF)0$$aTennant, D.A.$$b0
000022303 245__ $$aAnomalous dynamical line shapes in a quantum magnet at finite temperature
000022303 260__ $$aCollege Park, Md.$$bAPS$$c2012
000022303 300__ $$a014402
000022303 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022303 3367_ $$2DataCite$$aOutput Types/Journal article
000022303 3367_ $$00$$2EndNote$$aJournal Article
000022303 3367_ $$2BibTeX$$aARTICLE
000022303 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022303 3367_ $$2DRIVER$$aarticle
000022303 440_0 $$04919$$aPhysical Review B$$v85$$x1098-0121$$y1
000022303 500__ $$3POF3_Assignment on 2016-02-29
000022303 500__ $$aWe thank Rick Paul (NIST) for measuring the deuteration of the sample, S. Pfannenstiel (HZB) for storage, Felix Groitl (HZB) for photograghy, and K. Damle (TFIR Mumbai) for enlightening discussions. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358.
000022303 520__ $$aThe effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.
000022303 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022303 542__ $$2Crossref$$i2012-01-04$$uhttp://link.aps.org/licenses/aps-default-license
000022303 588__ $$aDataset connected to Web of Science
000022303 650_7 $$2WoSType$$aJ
000022303 7001_ $$0P:(DE-HGF)0$$aLake, B.$$b1
000022303 7001_ $$0P:(DE-HGF)0$$aJames, A.J.A.$$b2
000022303 7001_ $$0P:(DE-HGF)0$$aEssler, F.H.L.$$b3
000022303 7001_ $$0P:(DE-HGF)0$$aNotbohm, S.$$b4
000022303 7001_ $$0P:(DE-HGF)0$$aMikeska, H.-J.$$b5
000022303 7001_ $$0P:(DE-Juel1)VDB73085$$aFielden, J.$$b6$$uFZJ
000022303 7001_ $$0P:(DE-HGF)0$$aKögerler, P.$$b7
000022303 7001_ $$0P:(DE-HGF)0$$aCanfield, P.C.$$b8
000022303 7001_ $$0P:(DE-HGF)0$$aTelling, M.T.F.$$b9
000022303 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.85.014402$$bAmerican Physical Society (APS)$$d2012-01-04$$n1$$p014402$$tPhysical Review B$$v85$$x1098-0121$$y2012
000022303 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.85.014402$$gVol. 85, p. 014402$$n1$$p014402$$q85<014402$$tPhysical review / B$$v85$$x1098-0121$$y2012
000022303 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.85.014402
000022303 8564_ $$uhttps://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf$$yOpenAccess
000022303 8564_ $$uhttps://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.gif?subformat=icon$$xicon$$yOpenAccess
000022303 8564_ $$uhttps://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000022303 8564_ $$uhttps://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000022303 8564_ $$uhttps://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000022303 909CO $$ooai:juser.fz-juelich.de:22303$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000022303 9141_ $$y2012
000022303 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022303 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000022303 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022303 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022303 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022303 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022303 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022303 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022303 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022303 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022303 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022303 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022303 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022303 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022303 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$gPGI$$kPGI-6$$lElektronische Eigenschaften$$x0
000022303 970__ $$aVDB:(DE-Juel1)138783
000022303 980__ $$aVDB
000022303 980__ $$aConvertedRecord
000022303 980__ $$ajournal
000022303 980__ $$aI:(DE-Juel1)PGI-6-20110106
000022303 980__ $$aUNRESTRICTED
000022303 9801_ $$aFullTexts
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1127756
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.037202
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2008/05/P05017
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1143831
000022303 999C5 $$1S. Sachdev$$2Crossref$$oS. Sachdev Quantum Phase Transitions 1999$$tQuantum Phase Transitions$$y1999
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.157204
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.63.134417
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.100403
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2009/09/P09018
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.094411
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.104417
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.54.R9624
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.214408
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.69.104417
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.73.012110
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.094411
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.11384
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.214410
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.054415
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.67.054414
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.nuclphysb.2007.07.008
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2010/11/P11012
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.184426
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b413934h
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.4465
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0378-4363(75)90101-1
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.31.3015
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys152
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.590
000022303 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.214408