001     22303
005     20230426083035.0
024 7 _ |a 10.1103/PhysRevB.85.014402
|2 DOI
024 7 _ |a WOS:000298861900001
|2 WOS
024 7 _ |a 2128/10852
|2 Handle
037 _ _ |a PreJuSER-22303
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Tennant, D.A.
|b 0
245 _ _ |a Anomalous dynamical line shapes in a quantum magnet at finite temperature
260 _ _ |a College Park, Md.
|b APS
|c 2012
300 _ _ |a 014402
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4919
|a Physical Review B
|v 85
|x 1098-0121
|y 1
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank Rick Paul (NIST) for measuring the deuteration of the sample, S. Pfannenstiel (HZB) for storage, Felix Groitl (HZB) for photograghy, and K. Damle (TFIR Mumbai) for enlightening discussions. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358.
520 _ _ |a The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2012-01-04
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Lake, B.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a James, A.J.A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Essler, F.H.L.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Notbohm, S.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Mikeska, H.-J.
|b 5
700 1 _ |0 P:(DE-Juel1)VDB73085
|a Fielden, J.
|b 6
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Kögerler, P.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Canfield, P.C.
|b 8
700 1 _ |0 P:(DE-HGF)0
|a Telling, M.T.F.
|b 9
773 1 8 |a 10.1103/physrevb.85.014402
|b American Physical Society (APS)
|d 2012-01-04
|n 1
|p 014402
|3 journal-article
|2 Crossref
|t Physical Review B
|v 85
|y 2012
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.85.014402
|g Vol. 85, p. 014402
|0 PERI:(DE-600)2844160-6
|n 1
|q 85<014402
|p 014402
|t Physical review / B
|v 85
|y 2012
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.85.014402
856 4 _ |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:22303
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|g PGI
|k PGI-6
|l Elektronische Eigenschaften
|x 0
970 _ _ |a VDB:(DE-Juel1)138783
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts
999 C 5 |a 10.1126/science.1127756
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.87.037202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-5468/2008/05/P05017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1143831
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Sachdev
|y 1999
|2 Crossref
|t Quantum Phase Transitions
|o S. Sachdev Quantum Phase Transitions 1999
999 C 5 |a 10.1103/PhysRevLett.100.157204
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.134417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.100403
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-5468/2009/09/P09018
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.78.094411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.104417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.R9624
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.214408
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.69.104417
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.73.012110
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.094411
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.11384
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.214410
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.83.054415
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.054414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.nuclphysb.2007.07.008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-5468/2010/11/P11012
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.73.184426
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1039/b413934h
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.84.4465
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0378-4363(75)90101-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.31.3015
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys152
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.49.590
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.79.214408
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21