| Hauptseite > Publikationsdatenbank > Anomalous dynamical line shapes in a quantum magnet at finite temperature > print |
| 001 | 22303 | ||
| 005 | 20230426083035.0 | ||
| 024 | 7 | _ | |a 10.1103/PhysRevB.85.014402 |2 DOI |
| 024 | 7 | _ | |a WOS:000298861900001 |2 WOS |
| 024 | 7 | _ | |a 2128/10852 |2 Handle |
| 037 | _ | _ | |a PreJuSER-22303 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 530 |
| 084 | _ | _ | |2 WoS |a Physics, Condensed Matter |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Tennant, D.A. |b 0 |
| 245 | _ | _ | |a Anomalous dynamical line shapes in a quantum magnet at finite temperature |
| 260 | _ | _ | |a College Park, Md. |b APS |c 2012 |
| 300 | _ | _ | |a 014402 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 4919 |a Physical Review B |v 85 |x 1098-0121 |y 1 |
| 500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
| 500 | _ | _ | |a We thank Rick Paul (NIST) for measuring the deuteration of the sample, S. Pfannenstiel (HZB) for storage, Felix Groitl (HZB) for photograghy, and K. Damle (TFIR Mumbai) for enlightening discussions. Work at the Ames Laboratory was supported by the US Department of Energy, Basic Energy Sciences, under Contract No. DE-AC02-07CH11358. |
| 520 | _ | _ | |a The effect of thermal fluctuations on the dynamics of a gapped quantum magnet is studied using inelastic neutron scattering on copper nitrate, a model material for the spin-1/2, one-dimensional (1D) bond alternating Heisenberg chain. A large, highly deuterated, single-crystal sample of copper nitrate is produced using a solution growth method and measurements are made using the high-resolution backscattering spectrometer OSIRIS at the ISIS Facility. Theoretical calculations and numerical analysis are combined to interpret the physical origin of the thermal effects observed in the magnetic spectra. The primary observations are (1) a thermally induced central peak due to intraband scattering, which is similar to Villain scattering familiar from soliton systems in 1D, and (2) the one-magnon quasiparticle pole is seen to develop with temperature into an asymmetric continuum of scattering. We relate this asymmetric line broadening to a thermal strongly correlated state caused by hard-core constraints and quasiparticle interactions. These findings are a counter example to recent assertions of the universality of line broadening in 1D systems and are applicable to a broad range of quantum systems. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF) |a Grundlagen für zukünftige Informationstechnologien |c P42 |x 0 |
| 542 | _ | _ | |i 2012-01-04 |2 Crossref |u http://link.aps.org/licenses/aps-default-license |
| 588 | _ | _ | |a Dataset connected to Web of Science |
| 650 | _ | 7 | |2 WoSType |a J |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Lake, B. |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a James, A.J.A. |b 2 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Essler, F.H.L. |b 3 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Notbohm, S. |b 4 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Mikeska, H.-J. |b 5 |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB73085 |a Fielden, J. |b 6 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Kögerler, P. |b 7 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Canfield, P.C. |b 8 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Telling, M.T.F. |b 9 |
| 773 | 1 | 8 | |a 10.1103/physrevb.85.014402 |b American Physical Society (APS) |d 2012-01-04 |n 1 |p 014402 |3 journal-article |2 Crossref |t Physical Review B |v 85 |y 2012 |x 1098-0121 |
| 773 | _ | _ | |a 10.1103/PhysRevB.85.014402 |g Vol. 85, p. 014402 |0 PERI:(DE-600)2844160-6 |n 1 |q 85<014402 |p 014402 |t Physical review / B |v 85 |y 2012 |x 1098-0121 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1103/PhysRevB.85.014402 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.gif?subformat=icon |x icon |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.jpg?subformat=icon-700 |x icon-700 |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22303/files/PhysRevB.85.014402.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:22303 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 913 | 1 | _ | |0 G:(DE-Juel1)FUEK412 |1 G:(DE-HGF)POF2-420 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |v Grundlagen für zukünftige Informationstechnologien |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a American Physical Society Transfer of Copyright Agreement |0 LIC:(DE-HGF)APS-112012 |2 HGFVOC |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1020 |2 StatID |b Current Contents - Social and Behavioral Sciences |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-6-20110106 |g PGI |k PGI-6 |l Elektronische Eigenschaften |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)138783 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-6-20110106 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| 999 | C | 5 | |a 10.1126/science.1127756 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.87.037202 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1742-5468/2008/05/P05017 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1126/science.1143831 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |1 S. Sachdev |y 1999 |2 Crossref |t Quantum Phase Transitions |o S. Sachdev Quantum Phase Transitions 1999 |
| 999 | C | 5 | |a 10.1103/PhysRevLett.100.157204 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.63.134417 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.78.100403 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1742-5468/2009/09/P09018 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.78.094411 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.82.104417 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.54.R9624 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.68.214408 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.69.104417 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevA.73.012110 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.76.094411 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.59.11384 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.82.214410 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.83.054415 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.67.054414 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/j.nuclphysb.2007.07.008 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1088/1742-5468/2010/11/P11012 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.73.184426 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1039/b413934h |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.84.4465 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1016/0378-4363(75)90101-1 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.31.3015 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1038/nphys152 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevLett.49.590 |9 -- missing cx lookup -- |2 Crossref |
| 999 | C | 5 | |a 10.1103/PhysRevB.79.214408 |9 -- missing cx lookup -- |2 Crossref |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|