000022309 001__ 22309
000022309 005__ 20240711085659.0
000022309 0247_ $$2DOI$$a10.1016/j.jpowsour.2012.06.087
000022309 0247_ $$2WOS$$aWOS:000309038100025
000022309 037__ $$aPreJuSER-22309
000022309 041__ $$aeng
000022309 082__ $$a620
000022309 084__ $$2WoS$$aElectrochemistry
000022309 084__ $$2WoS$$aEnergy & Fuels
000022309 1001_ $$0P:(DE-Juel1)VDB69624$$aHan, F.$$b0$$uFZJ
000022309 245__ $$aNovel high-performance solid oxide fuel cells with bulk ionic conductance dominated thin-film electrolytes
000022309 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2012
000022309 300__ $$a157 - 162
000022309 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022309 3367_ $$2DataCite$$aOutput Types/Journal article
000022309 3367_ $$00$$2EndNote$$aJournal Article
000022309 3367_ $$2BibTeX$$aARTICLE
000022309 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022309 3367_ $$2DRIVER$$aarticle
000022309 440_0 $$03727$$aJournal of Power Sources$$v218$$x0378-7753
000022309 500__ $$aRecord converted from VDB: 12.11.2012
000022309 520__ $$aThe overall performance of ionic conducting electrolyte layers is a key factor for determining the power density of solid oxide fuel cells (SOFCs). The aim of this work is to investigate high performance SOFC electrolyte layers developed in our lab via a low cost wet-chemical processing method. In this paper. SOFCs with bulk ionic conductivity dominated thin-film electrolyte demonstrate superior electrochemical performances. Conventional materials for SOFCs are applied in this work: Ni-YSZ cermet as the anode, yttria-stabilized zirconia (YSZ) as the electrolyte, gadolinia-doped ceria (CGO) as the Sr-diffusion barrier layer, and LSCF or LSC as the cathode. At 0.7 V and 600 degrees C. single cells with an active LSCF and LSC cathode area of 4 x 4 cm(2) obtain a power density of 0.7 and 1.4 W cm(-2), respectively. According to electrochemical impedance spectroscopy (EIS), the ohmic resistance of the single cells is almost one order of magnitude lower than the conventionally fabricated SOFCs. Due to the improved performance of the electrolyte, SOFCs are able to deliver high power output at reduced operating temperature and increased cell voltage. (C) 2012 Elsevier B.V. All rights reserved.
000022309 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000022309 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000022309 588__ $$aDataset connected to Web of Science
000022309 650_7 $$2WoSType$$aJ
000022309 65320 $$2Author$$aSolid oxide fuel cell
000022309 65320 $$2Author$$aPower density
000022309 65320 $$2Author$$aElectrolyte
000022309 65320 $$2Author$$aYttria-stabilized zirconia
000022309 7001_ $$0P:(DE-Juel1)129641$$aMücke, R.$$b1$$uFZJ
000022309 7001_ $$0P:(DE-Juel1)VDB61604$$avan Gestel, T.$$b2$$uFZJ
000022309 7001_ $$0P:(DE-HGF)0$$aLeonide, M.$$b3
000022309 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N.H.$$b4$$uFZJ
000022309 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H.P.$$b5$$uFZJ
000022309 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b6$$uFZJ
000022309 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2012.06.087$$gVol. 218, p. 157 - 162$$p157 - 162$$q218<157 - 162$$tJournal of power sources$$v218$$x0378-7753$$y2012
000022309 8567_ $$uhttp://dx.doi.org/10.1016/j.jpowsour.2012.06.087
000022309 8564_ $$uhttps://juser.fz-juelich.de/record/22309/files/FZJ-22309_PV.pdf$$yRestricted$$zPublished final document.
000022309 909CO $$ooai:juser.fz-juelich.de:22309$$pVDB
000022309 9131_ $$0G:(DE-Juel1)FUEK402$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000022309 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000022309 9141_ $$y2012
000022309 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022309 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022309 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022309 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022309 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022309 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022309 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022309 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022309 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000022309 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000022309 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000022309 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000022309 970__ $$aVDB:(DE-Juel1)138794
000022309 980__ $$aVDB
000022309 980__ $$aConvertedRecord
000022309 980__ $$ajournal
000022309 980__ $$aI:(DE-Juel1)IEK-1-20101013
000022309 980__ $$aUNRESTRICTED
000022309 981__ $$aI:(DE-Juel1)IMD-2-20101013