001     22341
005     20200402210303.0
024 7 _ |2 pmid
|a pmid:22139094
024 7 _ |2 DOI
|a 10.1140/epje/i2011-11129-1
024 7 _ |2 WOS
|a WOS:000301498400001
037 _ _ |a PreJuSER-22341
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Chemistry, Physical
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |0 P:(DE-Juel1)130804
|a Lorenz, B
|b 0
|u FZJ
245 _ _ |a Rubber friction: Comparison of theory with experiment
260 _ _ |a Berlin
|b Springer
|c 2011
300 _ _ |a 129
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 1985
|a European Physical Journal E
|v 34
|x 1292-8941
|y 12
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We thank M. Kluppel for the unfilled and filled SB rubber samples. This work, as part of the European Science Foundation EUROCORES Program FANAS, was supported from funds by the DFG and the EC Sixth Framework Program, under contract N ERAS-CT-2003-980409.
520 _ _ |a We have measured the friction force acting on a rubber block slid on a concrete surface. We used both unfilled and filled (with carbon black) styrene butadiene (SB) rubber and have varied the temperature from -10 °C to 100 °C and the sliding velocity from 1 μm/s to 1000 μm/s. We find that the experimental data at different temperatures can be shifted into a smooth master-curve, using the temperature-frequency shifting factors obtained from measurements of the bulk viscoelastic modulus. The experimental data has been analyzed using a theory which takes into account the contributions to the friction from both the substrate asperity-induced viscoelastic deformations of the rubber, and from shearing the area of real contact. For filled SB rubber the frictional shear stress σ(f) in the area of real contact results mainly from the energy dissipation at the opening crack on the exit side of the rubber-asperity contact regions. For unfilled rubber we instead attribute σ(f) to shearing of a thin rubber smear film, which is deposited on the concrete surface during run in. We observe very different rubber wear processes for filled and unfilled SB rubber, which is consistent with the different frictional processes. Thus, the wear of filled SB rubber results in micrometer-sized rubber particles which accumulate as dry dust, which is easily removed by blowing air on the concrete surface. This wear process seams to occur at a steady rate. For unfilled rubber a smear film forms on the concrete surface, which cannot be removed even using a high-pressure air stream. In this case the wear rate appears to slow down after some run in time period.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Construction Materials
650 _ 2 |2 MeSH
|a Elastic Modulus
650 _ 2 |2 MeSH
|a Friction
650 _ 2 |2 MeSH
|a Materials Testing
650 _ 2 |2 MeSH
|a Models, Chemical
650 _ 2 |2 MeSH
|a Rubber: chemistry
650 _ 2 |2 MeSH
|a Shear Strength
650 _ 2 |2 MeSH
|a Stress, Mechanical
650 _ 2 |2 MeSH
|a Surface Properties
650 _ 2 |2 MeSH
|a Viscosity
650 _ 7 |0 9006-04-6
|2 NLM Chemicals
|a Rubber
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)130885
|a Persson, B.N.J.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Dieluweit, S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Tada, T.
|b 3
773 _ _ |0 PERI:(DE-600)2004003-9
|a 10.1140/epje/i2011-11129-1
|g Vol. 34, p. 129
|p 129
|q 34<129
|t The @European physical journal / E
|v 34
|x 1292-8941
|y 2011
856 7 _ |u http://dx.doi.org/10.1140/epje/i2011-11129-1
909 C O |o oai:juser.fz-juelich.de:22341
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK412
|1 G:(DE-HGF)POF2-420
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|g IAS
|k IAS-1
|l Quanten-Theorie der Materialien
|x 1
|z IFF-1
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|g PGI
|k PGI-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)ICS-7-20110106
|k ICS-7
|l Biomechanik
|x 2
970 _ _ |a VDB:(DE-Juel1)138839
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)PGI-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21