000022344 001__ 22344
000022344 005__ 20200423203247.0
000022344 0247_ $$2pmid$$apmid:22156113
000022344 0247_ $$2DOI$$a10.1088/0953-8984/24/5/053201
000022344 0247_ $$2WOS$$aWOS:000299326500007
000022344 0247_ $$2Handle$$a2128/23200
000022344 037__ $$aPreJuSER-22344
000022344 041__ $$aeng
000022344 082__ $$a530
000022344 084__ $$2WoS$$aPhysics, Condensed Matter
000022344 1001_ $$0P:(DE-Juel1)VDB941$$aLiebsch, A.$$b0$$uFZJ
000022344 245__ $$aTemperature and bath size in exact diagonalization dynamical mean field theory
000022344 260__ $$aBristol$$bIOP Publ.$$c2012
000022344 300__ $$a053201
000022344 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022344 3367_ $$2DataCite$$aOutput Types/Journal article
000022344 3367_ $$00$$2EndNote$$aJournal Article
000022344 3367_ $$2BibTeX$$aARTICLE
000022344 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022344 3367_ $$2DRIVER$$aarticle
000022344 440_0 $$03703$$aJournal of Physics: Condensed Matter$$v24$$x0953-8984$$y5
000022344 500__ $$3POF3_Assignment on 2016-02-29
000022344 500__ $$aRecord converted from VDB: 12.11.2012
000022344 520__ $$aDynamical mean field theory (DMFT), combined with finite-temperature exact diagonalization, is one of the methods used to describe electronic properties of strongly correlated materials. Because of the rapid growth of the Hilbert space, the size of the finite bath used to represent the infinite lattice is severely limited. In view of the increasing interest in the effect of multi-orbital and multi-site Coulomb correlations in transition metal oxides, high-T(c) cuprates, iron-based pnictides, organic crystals, etc, it is appropriate to explore the range of temperatures and bath sizes in which exact diagonalization provides accurate results for various system properties. On the one hand, the bath must be large enough to achieve a sufficiently dense level spacing, so that useful spectral information can be derived, especially close to the Fermi level. On the other hand, for an adequate projection of the lattice Green's function onto a finite bath, the choice of the temperature is crucial. The role of these two key ingredients in exact diagonalization DMFT is discussed for a wide variety of systems in order to establish the domain of applicability of this approach. Three criteria are used to illustrate the accuracy of the results: (i) the convergence of the self-energy with the bath size, (ii) the quality of the discretization of the bath Green's function, and (iii) comparisons with complementary results obtained via continuous-time quantum Monte Carlo DMFT. The materials comprise a variety of three-orbital and five-orbital systems, as well as single-band Hubbard models for two-dimensional triangular, square and honeycomb lattices, where non-local Coulomb correlations are important. The main conclusion from these examples is that a larger number of correlated orbitals or sites requires a smaller number of bath levels. Down to temperatures of 5-10 meV (for typical bandwidths W ≈ 2 eV) two bath levels per correlated impurity orbital or site are usually adequate.
000022344 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022344 588__ $$aDataset connected to Web of Science, Pubmed
000022344 650_2 $$2MeSH$$aAlgorithms
000022344 650_2 $$2MeSH$$aCalcium: chemistry
000022344 650_2 $$2MeSH$$aChemistry, Physical: methods
000022344 650_2 $$2MeSH$$aCobalt: chemistry
000022344 650_2 $$2MeSH$$aModels, Statistical
000022344 650_2 $$2MeSH$$aMonte Carlo Method
000022344 650_2 $$2MeSH$$aOxygen: chemistry
000022344 650_2 $$2MeSH$$aReproducibility of Results
000022344 650_2 $$2MeSH$$aRubidium: chemistry
000022344 650_2 $$2MeSH$$aSodium: chemistry
000022344 650_2 $$2MeSH$$aSoftware
000022344 650_2 $$2MeSH$$aTemperature
000022344 650_2 $$2MeSH$$aVanadium: chemistry
000022344 650_7 $$07440-17-7$$2NLM Chemicals$$aRubidium
000022344 650_7 $$07440-23-5$$2NLM Chemicals$$aSodium
000022344 650_7 $$07440-48-4$$2NLM Chemicals$$aCobalt
000022344 650_7 $$07440-62-2$$2NLM Chemicals$$aVanadium
000022344 650_7 $$07440-70-2$$2NLM Chemicals$$aCalcium
000022344 650_7 $$07782-44-7$$2NLM Chemicals$$aOxygen
000022344 650_7 $$2WoSType$$aJ
000022344 7001_ $$0P:(DE-HGF)0$$aIshida, H.$$b1
000022344 773__ $$0PERI:(DE-600)1472968-4$$a10.1088/0953-8984/24/5/053201$$gVol. 24, p. 053201$$p053201$$q24<053201$$tJournal of physics / Condensed matter$$v24$$x0953-8984$$y2012
000022344 8567_ $$uhttp://dx.doi.org/10.1088/0953-8984/24/5/053201
000022344 8564_ $$uhttps://juser.fz-juelich.de/record/22344/files/1109.0158.pdf$$yOpenAccess
000022344 8564_ $$uhttps://juser.fz-juelich.de/record/22344/files/1109.0158.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000022344 909CO $$ooai:juser.fz-juelich.de:22344$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000022344 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022344 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022344 9141_ $$y2012
000022344 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022344 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022344 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022344 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022344 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022344 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022344 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022344 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022344 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022344 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022344 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022344 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000022344 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000022344 970__ $$aVDB:(DE-Juel1)138841
000022344 980__ $$aVDB
000022344 980__ $$aConvertedRecord
000022344 980__ $$ajournal
000022344 980__ $$aI:(DE-Juel1)IAS-1-20090406
000022344 980__ $$aI:(DE-Juel1)PGI-1-20110106
000022344 980__ $$aUNRESTRICTED
000022344 9801_ $$aFullTexts
000022344 981__ $$aI:(DE-Juel1)PGI-1-20110106