000022345 001__ 22345
000022345 005__ 20230426083036.0
000022345 0247_ $$2DOI$$a10.1103/PhysRevB.85.045112
000022345 0247_ $$2WOS$$aWOS:000299118000004
000022345 0247_ $$2Handle$$a2128/10849
000022345 037__ $$aPreJuSER-22345
000022345 041__ $$aeng
000022345 082__ $$a530
000022345 084__ $$2WoS$$aPhysics, Condensed Matter
000022345 1001_ $$0P:(DE-HGF)0$$aIshida, H.$$b0
000022345 245__ $$aFirst-order metal-to-metal phase transition and non-Fermi-liquid behavior in a two-dimensional Mott insulating layer adsorbed on a metal surface
000022345 260__ $$aCollege Park, Md.$$bAPS$$c2012
000022345 300__ $$a045112
000022345 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022345 3367_ $$2DataCite$$aOutput Types/Journal article
000022345 3367_ $$00$$2EndNote$$aJournal Article
000022345 3367_ $$2BibTeX$$aARTICLE
000022345 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022345 3367_ $$2DRIVER$$aarticle
000022345 440_0 $$04919$$aPhysical Review B$$v85$$x1098-0121$$y4
000022345 500__ $$3POF3_Assignment on 2016-02-29
000022345 500__ $$aH.I. thanks the Alexander von Humboldt Foundation for support during his stay in Germany. The work of H. I. was supported by a Grant-in-Aid for Scientific Research (No. 20540191) from the Japan Society for the Promotion of Science.
000022345 520__ $$aThe electronic structure of a two-dimensional Mott insulating layer in contact with a semi-infinite metal substrate is studied within cluster dynamical mean field theory. For this purpose, the overlayer forming a square lattice is divided into an array of (2 x 2)-site clusters in which interatomic electron correlations are taken into account explicitly. In striking contrast to the single-site approximation, where substrate-adsorbate hybridization gives rise to Fermi-liquid properties at low temperature, short-range correlations lead to bad metallicity in a much wider parameter range as a function of temperature and overlayer-substrate coupling strength. The (pi,0) component of the self-energy exhibits a finite low-energy scattering rate, which increases with decreasing temperature even when hybridization between overlayer and substrate states is as large as the nearest-neighbor hopping energy within the overlayer. In addition, at moderate overlayer-substrate coupling and in the presence of the second nearest-neighbor hopping interaction, the overlayer undergoes a first-order phase transition between two correlated metallic phases when electron doping is increased by changing the chemical potential. These results suggest that normal metal proximity effects are strongly modified when spatial fluctuations in the overlayer are taken into consideration.
000022345 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000022345 542__ $$2Crossref$$i2012-01-12$$uhttp://link.aps.org/licenses/aps-default-license
000022345 588__ $$aDataset connected to Web of Science
000022345 650_7 $$2WoSType$$aJ
000022345 7001_ $$0P:(DE-Juel1)VDB941$$aLiebsch, A.$$b1$$uFZJ
000022345 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.85.045112$$bAmerican Physical Society (APS)$$d2012-01-12$$n4$$p045112$$tPhysical Review B$$v85$$x1098-0121$$y2012
000022345 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.85.045112$$gVol. 85, p. 045112$$n4$$p045112$$q85<045112$$tPhysical review / B$$v85$$x1098-0121$$y2012
000022345 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.85.045112
000022345 8564_ $$uhttps://juser.fz-juelich.de/record/22345/files/PhysRevB.85.045112.pdf$$yOpenAccess
000022345 8564_ $$uhttps://juser.fz-juelich.de/record/22345/files/PhysRevB.85.045112.gif?subformat=icon$$xicon$$yOpenAccess
000022345 8564_ $$uhttps://juser.fz-juelich.de/record/22345/files/PhysRevB.85.045112.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000022345 8564_ $$uhttps://juser.fz-juelich.de/record/22345/files/PhysRevB.85.045112.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000022345 8564_ $$uhttps://juser.fz-juelich.de/record/22345/files/PhysRevB.85.045112.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000022345 909CO $$ooai:juser.fz-juelich.de:22345$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000022345 9141_ $$y2012
000022345 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022345 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000022345 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022345 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022345 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022345 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022345 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022345 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022345 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022345 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022345 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022345 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022345 9131_ $$0G:(DE-Juel1)FUEK412$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000022345 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000022345 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000022345 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000022345 970__ $$aVDB:(DE-Juel1)138842
000022345 980__ $$aVDB
000022345 980__ $$aConvertedRecord
000022345 980__ $$ajournal
000022345 980__ $$aI:(DE-Juel1)IAS-1-20090406
000022345 980__ $$aI:(DE-Juel1)PGI-1-20110106
000022345 980__ $$aUNRESTRICTED
000022345 9801_ $$aFullTexts
000022345 981__ $$aI:(DE-Juel1)PGI-1-20110106
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature00977
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02308
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2946
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02450
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.266403
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1151094
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.035133
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.064532
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.116807
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1146006
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1198781
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.68.13
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/00018730701619647
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.78.865
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.066802
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.116402
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.59.2549
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.60.7834
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.045107
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.87.186401
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.106402
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.165114
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.186403
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.78.241101
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.045120
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.056404
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.206407
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.165126
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.155101
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.226402
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0010-4655(01)00173-4
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.045130
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0039-6028(71)90115-4
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.72.1545
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045125
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.79.195108
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.83.035113
000022345 999C5 $$1R. B. Lehoucq$$2Crossref$$oR. B. Lehoucq ARPACK Users’ Guide 1997$$tARPACK Users’ Guide$$y1997
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.180511
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.161105
000022345 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.68.2512