| Hauptseite > Publikationsdatenbank > A nanopositioner for scanning probe microscopy: The KoalaDrive > print |
| 001 | 22353 | ||
| 005 | 20190625112225.0 | ||
| 024 | 7 | _ | |a pmid:22380095 |2 pmid |
| 024 | 7 | _ | |a 10.1063/1.3681444 |2 DOI |
| 024 | 7 | _ | |a WOS:000301566600027 |2 WOS |
| 024 | 7 | _ | |a 2128/7528 |2 Handle |
| 024 | 7 | _ | |a altmetric:691158 |2 altmetric |
| 037 | _ | _ | |a PreJuSER-22353 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 530 |
| 084 | _ | _ | |2 WoS |a Instruments & Instrumentation |
| 084 | _ | _ | |2 WoS |a Physics, Applied |
| 100 | 1 | _ | |a Cherepanov, V. |b 0 |u FZJ |0 P:(DE-Juel1)VDB10516 |
| 245 | _ | _ | |a A nanopositioner for scanning probe microscopy: The KoalaDrive |
| 260 | _ | _ | |a [S.l.] |b American Institute of Physics |c 2012 |
| 300 | _ | _ | |a 023703 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |a Review of Scientific Instruments |x 0034-6748 |0 5309 |y 2 |v 83 |
| 500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
| 500 | _ | _ | |a Record converted from VDB: 12.11.2012 |
| 520 | _ | _ | |a We present a new type of piezoelectric nanopositioner called KoalaDrive which can have a diameter less than 2.5 mm and a length smaller than 10 mm. The new operating principle provides a smooth travel sequence and avoids shaking which is intrinsic to nanopositioners based on inertial motion with sawtooth driving signals. In scanning probe microscopy, the KoalaDrive can be used for the coarse approach of the tip or sensor towards the sample. Inserting the KoalaDrive in a piezo tube for xyz-scanning integrates a complete scanning tunneling microscope (STM) inside a 4 mm outer diameter piezo tube of <10 mm length. The use of the KoalaDrive makes the scanning probe microscopy design ultracompact and accordingly leads to a high mechanical stability. The drive is UHV, low temperature, and magnetic field compatible. The compactness of the KoalaDrive allows building a multi-tip STM as small as a single tip STM. |
| 536 | _ | _ | |a Grundlagen für zukünftige Informationstechnologien |c P42 |2 G:(DE-HGF) |0 G:(DE-Juel1)FUEK412 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science, Pubmed |
| 650 | _ | 7 | |a J |2 WoSType |
| 700 | 1 | _ | |a Coenen, P. |b 1 |u FZJ |0 P:(DE-Juel1)VDB5705 |
| 700 | 1 | _ | |a Voigtländer, B. |b 2 |u FZJ |0 P:(DE-Juel1)VDB5601 |
| 773 | _ | _ | |a 10.1063/1.3681444 |g Vol. 83, p. 023703 |p 023703 |q 83<023703 |0 PERI:(DE-600)1472905-2 |t Review of scientific instruments |v 83 |y 2012 |x 0034-6748 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1063/1.3681444 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22353/files/FZJ-22353.pdf |y Published under German "Allianz" Licensing conditions on 2012-02-07. Available in OpenAccess from 2012-02-07 |z Published final document. |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22353/files/FZJ-22353.jpg?subformat=icon-1440 |x icon-1440 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22353/files/FZJ-22353.jpg?subformat=icon-180 |x icon-180 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/22353/files/FZJ-22353.jpg?subformat=icon-640 |x icon-640 |
| 909 | C | O | |o oai:juser.fz-juelich.de:22353 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
| 913 | 1 | _ | |b Schlüsseltechnologien |k P42 |l Grundlagen für zukünftige Informationstechnologien (FIT) |1 G:(DE-HGF)POF2-420 |0 G:(DE-Juel1)FUEK412 |2 G:(DE-HGF)POF2-400 |v Grundlagen für zukünftige Informationstechnologien |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
| 915 | _ | _ | |a Allianz-Lizenz / DFG |0 StatID:(DE-HGF)0400 |2 StatID |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a Allianz-OA |0 StatID:(DE-HGF)0520 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-3-20110106 |k PGI-3 |l Funktionale Nanostrukturen an Oberflächen |g PGI |x 0 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |g JARA |x 1 |
| 970 | _ | _ | |a VDB:(DE-Juel1)138851 |
| 980 | 1 | _ | |a FullTexts |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-3-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a JUWEL |
| 980 | _ | _ | |a FullTexts |
| 981 | _ | _ | |a I:(DE-Juel1)VDB881 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|