000022360 001__ 22360 000022360 005__ 20210129210821.0 000022360 0247_ $$2DOI$$a10.1002/andp.201100299 000022360 0247_ $$2WOS$$aWOS:000307445500011 000022360 0247_ $$2altmetric$$aaltmetric:7403281 000022360 037__ $$aPreJuSER-22360 000022360 041__ $$aeng 000022360 082__ $$a530 000022360 084__ $$2WoS$$aPhysics, Multidisciplinary 000022360 1001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b0 000022360 245__ $$aEvent-by-event simulation of quantum phenomena 000022360 260__ $$c2012 000022360 300__ $$a393 - 410 000022360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000022360 3367_ $$2DataCite$$aOutput Types/Journal article 000022360 3367_ $$00$$2EndNote$$aJournal Article 000022360 3367_ $$2BibTeX$$aARTICLE 000022360 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000022360 3367_ $$2DRIVER$$aarticle 000022360 440_0 $$020001$$aAnnalen der Physik$$v524$$x0003-3804$$y8 000022360 500__ $$aWe would like to thank K. De Raedt, F. Jin, and S. Miyashita for many thoughtful comments and contributions to the work on which this review is based. This work is partially supported by NCF, the Netherlands. 000022360 520__ $$aA discrete-event simulation approach is reviewed that does not require the knowledge of the solution of the wave equation of the whole system, yet reproduces the statistical distributions of wave theory by generating detection events one-by-one. The simulation approach is illustrated by applications to a two-beam interference experiment and two Bell test experiments, an Einstein-Podolsky-Rosen-Bohm experiment with single photons employing post-selection for pair identification and a single-neutron Bell test interferometry experiment with nearly 100 % detection efficiency. 000022360 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0 000022360 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1 000022360 588__ $$aDataset connected to Web of Science 000022360 65320 $$2Author$$aQuantum mechanics 000022360 65320 $$2Author$$ainterference 000022360 65320 $$2Author$$aEPR experiments 000022360 65320 $$2Author$$adiscrete event simulation 000022360 650_7 $$2WoSType$$aJ 000022360 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$uFZJ 000022360 773__ $$0PERI:(DE-600)1479791-4$$a10.1002/andp.201100299$$gVol. 524, p. 393 - 410$$p393 - 410$$q524<393 - 410$$tAnnalen der Physik$$v524$$x0003-3804$$y2012 000022360 8567_ $$uhttp://dx.doi.org/10.1002/andp.201100299 000022360 909CO $$ooai:juser.fz-juelich.de:22360$$pVDB 000022360 9141_ $$y2012 000022360 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000022360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000022360 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000022360 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000022360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000022360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000022360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000022360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000022360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000022360 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000022360 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0 000022360 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1 000022360 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000022360 970__ $$aVDB:(DE-Juel1)138858 000022360 980__ $$aVDB 000022360 980__ $$aConvertedRecord 000022360 980__ $$ajournal 000022360 980__ $$aI:(DE-Juel1)JSC-20090406 000022360 980__ $$aUNRESTRICTED