000022360 001__ 22360
000022360 005__ 20210129210821.0
000022360 0247_ $$2DOI$$a10.1002/andp.201100299
000022360 0247_ $$2WOS$$aWOS:000307445500011
000022360 0247_ $$2altmetric$$aaltmetric:7403281
000022360 037__ $$aPreJuSER-22360
000022360 041__ $$aeng
000022360 082__ $$a530
000022360 084__ $$2WoS$$aPhysics, Multidisciplinary
000022360 1001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b0
000022360 245__ $$aEvent-by-event simulation of quantum phenomena
000022360 260__ $$c2012
000022360 300__ $$a393 - 410
000022360 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022360 3367_ $$2DataCite$$aOutput Types/Journal article
000022360 3367_ $$00$$2EndNote$$aJournal Article
000022360 3367_ $$2BibTeX$$aARTICLE
000022360 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022360 3367_ $$2DRIVER$$aarticle
000022360 440_0 $$020001$$aAnnalen der Physik$$v524$$x0003-3804$$y8
000022360 500__ $$aWe would like to thank K. De Raedt, F. Jin, and S. Miyashita for many thoughtful comments and contributions to the work on which this review is based. This work is partially supported by NCF, the Netherlands.
000022360 520__ $$aA discrete-event simulation approach is reviewed that does not require the knowledge of the solution of the wave equation of the whole system, yet reproduces the statistical distributions of wave theory by generating detection events one-by-one. The simulation approach is illustrated by applications to a two-beam interference experiment and two Bell test experiments, an Einstein-Podolsky-Rosen-Bohm experiment with single photons employing post-selection for pair identification and a single-neutron Bell test interferometry experiment with nearly 100 % detection efficiency.
000022360 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000022360 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000022360 588__ $$aDataset connected to Web of Science
000022360 65320 $$2Author$$aQuantum mechanics
000022360 65320 $$2Author$$ainterference
000022360 65320 $$2Author$$aEPR experiments
000022360 65320 $$2Author$$adiscrete event simulation
000022360 650_7 $$2WoSType$$aJ
000022360 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$uFZJ
000022360 773__ $$0PERI:(DE-600)1479791-4$$a10.1002/andp.201100299$$gVol. 524, p. 393 - 410$$p393 - 410$$q524<393 - 410$$tAnnalen der Physik$$v524$$x0003-3804$$y2012
000022360 8567_ $$uhttp://dx.doi.org/10.1002/andp.201100299
000022360 909CO $$ooai:juser.fz-juelich.de:22360$$pVDB
000022360 9141_ $$y2012
000022360 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022360 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022360 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022360 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022360 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022360 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022360 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022360 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022360 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022360 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022360 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000022360 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000022360 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000022360 970__ $$aVDB:(DE-Juel1)138858
000022360 980__ $$aVDB
000022360 980__ $$aConvertedRecord
000022360 980__ $$ajournal
000022360 980__ $$aI:(DE-Juel1)JSC-20090406
000022360 980__ $$aUNRESTRICTED