001     22360
005     20210129210821.0
024 7 _ |2 DOI
|a 10.1002/andp.201100299
024 7 _ |2 WOS
|a WOS:000307445500011
024 7 _ |a altmetric:7403281
|2 altmetric
037 _ _ |a PreJuSER-22360
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a De Raedt, H.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Event-by-event simulation of quantum phenomena
260 _ _ |c 2012
300 _ _ |a 393 - 410
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Annalen der Physik
|x 0003-3804
|0 20001
|y 8
|v 524
500 _ _ |a We would like to thank K. De Raedt, F. Jin, and S. Miyashita for many thoughtful comments and contributions to the work on which this review is based. This work is partially supported by NCF, the Netherlands.
520 _ _ |a A discrete-event simulation approach is reviewed that does not require the knowledge of the solution of the wave equation of the whole system, yet reproduces the statistical distributions of wave theory by generating detection events one-by-one. The simulation approach is illustrated by applications to a two-beam interference experiment and two Bell test experiments, an Einstein-Podolsky-Rosen-Bohm experiment with single photons employing post-selection for pair identification and a single-neutron Bell test interferometry experiment with nearly 100 % detection efficiency.
536 _ _ |2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Quantum mechanics
653 2 0 |2 Author
|a interference
653 2 0 |2 Author
|a EPR experiments
653 2 0 |2 Author
|a discrete event simulation
700 1 _ |a Michielsen, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)138295
773 _ _ |0 PERI:(DE-600)1479791-4
|a 10.1002/andp.201100299
|g Vol. 524, p. 393 - 410
|p 393 - 410
|q 524<393 - 410
|t Annalen der Physik
|v 524
|x 0003-3804
|y 2012
856 7 _ |u http://dx.doi.org/10.1002/andp.201100299
909 C O |o oai:juser.fz-juelich.de:22360
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |k JSC
|l Jülich Supercomputing Centre
|g JSC
|0 I:(DE-Juel1)JSC-20090406
|x 0
970 _ _ |a VDB:(DE-Juel1)138858
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21