000022367 001__ 22367 000022367 005__ 20240911115616.0 000022367 0247_ $$2DOI$$a10.1016/j.jqsrt.2012.05.001 000022367 0247_ $$2WOS$$aWOS:000306615400004 000022367 037__ $$aPreJuSER-22367 000022367 041__ $$aeng 000022367 082__ $$a530 000022367 084__ $$2WoS$$aSpectroscopy 000022367 1001_ $$0P:(DE-HGF)0$$aFunke, B.$$b0 000022367 245__ $$aGRANANDA: A Generic RAdiative traNsfer AnD non-LTE population 000022367 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2012 000022367 300__ $$a1771 - 1817 000022367 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000022367 3367_ $$2DataCite$$aOutput Types/Journal article 000022367 3367_ $$00$$2EndNote$$aJournal Article 000022367 3367_ $$2BibTeX$$aARTICLE 000022367 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000022367 3367_ $$2DRIVER$$aarticle 000022367 440_0 $$026344$$aJOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER$$v113$$y14 000022367 500__ $$3POF3_Assignment on 2016-02-29 000022367 500__ $$aWe would like to acknowledge the enormous effort of Alain Barbe, Claude Camy-Peiret, and Jean-Marie Flaud for improving and supplying spectroscopic data that are crucial for the non-LIE studies. We give special thanks to Jean-Marie Flaud for providing the spectroscopic data for many of the O<INF>3</INF> and NO<INF>2</INF> hot bands in addition to those in HITRAN2008. We also thank F.J. Martin-Torres for useful advices during the early development of the algorithm, and Miguel A. Lopez-Valverde, Sergio Gil-Lopez, Mariliza Koukouli and Diego Bermejo-Pantaleon for useful comments and suggestions. The IAA team was partially supported by the Spanish MCINN under projects AYA2008-03498/ESP, AYA2011-23552, "ASTROMOL" CSD2009-00038, and EC FEDER funds. 000022367 520__ $$aWe present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LIE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O-2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LIE populations or for calculating reasonably accurate but at high speed non-LIE populations in order to implement it into non-LIE remote sensing retrievals. We describe the model in detail and present an update of the non-LIE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O-3, N2O, CO, CH4, O-2, NO, NO2, HNO3, OH, N-2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LIE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75 degrees S, 45 degrees S, 10 degrees S, 10 degrees N, 45 degrees N, 75 degrees N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LIE collisional parameters on the non-LIE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies. (C) 2012 Elsevier Ltd. All rights reserved. 000022367 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0 000022367 588__ $$aDataset connected to Web of Science 000022367 65320 $$2Author$$aInfrared emissions 000022367 65320 $$2Author$$aNon-LTE 000022367 65320 $$2Author$$aEarth's atmosphere 000022367 65320 $$2Author$$aClimatology 000022367 65320 $$2Author$$aH2O 000022367 65320 $$2Author$$aCO2 000022367 65320 $$2Author$$aO-3 000022367 65320 $$2Author$$aN2O 000022367 65320 $$2Author$$aCO 000022367 65320 $$2Author$$aCH4 000022367 65320 $$2Author$$aO-2 000022367 65320 $$2Author$$aNO 000022367 65320 $$2Author$$aNO2 000022367 65320 $$2Author$$aHNO3 000022367 65320 $$2Author$$aOH 000022367 65320 $$2Author$$aN-2 000022367 65320 $$2Author$$aHCN 000022367 650_7 $$2WoSType$$aJ 000022367 7001_ $$0P:(DE-HGF)0$$aLópez-Puertas, M.$$b1 000022367 7001_ $$0P:(DE-HGF)0$$aGarda-Comas, M.$$b2 000022367 7001_ $$0P:(DE-Juel1)129128$$aKaufmann, M.$$b3$$uFZJ 000022367 7001_ $$0P:(DE-Juel1)VDB64846$$aStiller, G.P.$$b4$$uFZJ 000022367 773__ $$0PERI:(DE-600)1491916-3$$a10.1016/j.jqsrt.2012.05.001$$gVol. 113, p. 1771 - 1817$$p1771 - 1817$$q113<1771 - 1817$$tJournal of quantitative spectroscopy & radiative transfer$$v113$$x0022-4073$$y2012 000022367 8567_ $$uhttp://dx.doi.org/10.1016/j.jqsrt.2012.05.001 000022367 909CO $$ooai:juser.fz-juelich.de:22367$$pVDB:Earth_Environment$$pVDB 000022367 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown 000022367 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000022367 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000022367 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000022367 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000022367 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000022367 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000022367 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000022367 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000022367 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000022367 9141_ $$y2012 000022367 9131_ $$0G:(DE-Juel1)FUEK491$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22 000022367 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0 000022367 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$gIEK$$kIEK-7$$lStratosphäre$$x0 000022367 970__ $$aVDB:(DE-Juel1)138877 000022367 980__ $$aVDB 000022367 980__ $$aConvertedRecord 000022367 980__ $$ajournal 000022367 980__ $$aI:(DE-Juel1)IEK-7-20101013 000022367 980__ $$aUNRESTRICTED 000022367 981__ $$aI:(DE-Juel1)ICE-4-20101013