| Home > Publications database > GRANANDA: A Generic RAdiative traNsfer AnD non-LTE population > print |
| 001 | 22367 | ||
| 005 | 20240911115616.0 | ||
| 024 | 7 | _ | |2 DOI |a 10.1016/j.jqsrt.2012.05.001 |
| 024 | 7 | _ | |2 WOS |a WOS:000306615400004 |
| 037 | _ | _ | |a PreJuSER-22367 |
| 041 | _ | _ | |a eng |
| 082 | _ | _ | |a 530 |
| 084 | _ | _ | |2 WoS |a Spectroscopy |
| 100 | 1 | _ | |0 P:(DE-HGF)0 |a Funke, B. |b 0 |
| 245 | _ | _ | |a GRANANDA: A Generic RAdiative traNsfer AnD non-LTE population |
| 260 | _ | _ | |a New York, NY [u.a.] |b Elsevier |c 2012 |
| 300 | _ | _ | |a 1771 - 1817 |
| 336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a article |2 DRIVER |
| 440 | _ | 0 | |0 26344 |a JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER |v 113 |y 14 |
| 500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
| 500 | _ | _ | |a We would like to acknowledge the enormous effort of Alain Barbe, Claude Camy-Peiret, and Jean-Marie Flaud for improving and supplying spectroscopic data that are crucial for the non-LIE studies. We give special thanks to Jean-Marie Flaud for providing the spectroscopic data for many of the O |
| 520 | _ | _ | |a We present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LIE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O-2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LIE populations or for calculating reasonably accurate but at high speed non-LIE populations in order to implement it into non-LIE remote sensing retrievals. We describe the model in detail and present an update of the non-LIE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O-3, N2O, CO, CH4, O-2, NO, NO2, HNO3, OH, N-2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LIE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75 degrees S, 45 degrees S, 10 degrees S, 10 degrees N, 45 degrees N, 75 degrees N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LIE collisional parameters on the non-LIE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies. (C) 2012 Elsevier Ltd. All rights reserved. |
| 536 | _ | _ | |0 G:(DE-Juel1)FUEK491 |2 G:(DE-HGF) |a Atmosphäre und Klima |c P23 |x 0 |
| 588 | _ | _ | |a Dataset connected to Web of Science |
| 650 | _ | 7 | |2 WoSType |a J |
| 653 | 2 | 0 | |2 Author |a Infrared emissions |
| 653 | 2 | 0 | |2 Author |a Non-LTE |
| 653 | 2 | 0 | |2 Author |a Earth's atmosphere |
| 653 | 2 | 0 | |2 Author |a Climatology |
| 653 | 2 | 0 | |2 Author |a H2O |
| 653 | 2 | 0 | |2 Author |a CO2 |
| 653 | 2 | 0 | |2 Author |a O-3 |
| 653 | 2 | 0 | |2 Author |a N2O |
| 653 | 2 | 0 | |2 Author |a CO |
| 653 | 2 | 0 | |2 Author |a CH4 |
| 653 | 2 | 0 | |2 Author |a O-2 |
| 653 | 2 | 0 | |2 Author |a NO |
| 653 | 2 | 0 | |2 Author |a NO2 |
| 653 | 2 | 0 | |2 Author |a HNO3 |
| 653 | 2 | 0 | |2 Author |a OH |
| 653 | 2 | 0 | |2 Author |a N-2 |
| 653 | 2 | 0 | |2 Author |a HCN |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a López-Puertas, M. |b 1 |
| 700 | 1 | _ | |0 P:(DE-HGF)0 |a Garda-Comas, M. |b 2 |
| 700 | 1 | _ | |0 P:(DE-Juel1)129128 |a Kaufmann, M. |b 3 |u FZJ |
| 700 | 1 | _ | |0 P:(DE-Juel1)VDB64846 |a Stiller, G.P. |b 4 |u FZJ |
| 773 | _ | _ | |0 PERI:(DE-600)1491916-3 |a 10.1016/j.jqsrt.2012.05.001 |g Vol. 113, p. 1771 - 1817 |p 1771 - 1817 |q 113<1771 - 1817 |t Journal of quantitative spectroscopy & radiative transfer |v 113 |x 0022-4073 |y 2012 |
| 856 | 7 | _ | |u http://dx.doi.org/10.1016/j.jqsrt.2012.05.001 |
| 909 | C | O | |o oai:juser.fz-juelich.de:22367 |p VDB |p VDB:Earth_Environment |
| 913 | 1 | _ | |0 G:(DE-Juel1)FUEK491 |1 G:(DE-HGF)POF2-230 |2 G:(DE-HGF)POF2-200 |a DE-HGF |b Erde und Umwelt |k P23 |l Atmosphäre und Klima |v Atmosphäre und Klima |x 0 |z vormals P22 |
| 913 | 2 | _ | |a DE-HGF |b Marine, Küsten- und Polare Systeme |l Atmosphäre und Klima |1 G:(DE-HGF)POF3-240 |0 G:(DE-HGF)POF3-249H |2 G:(DE-HGF)POF3-200 |v Addenda |x 0 |
| 914 | 1 | _ | |y 2012 |
| 915 | _ | _ | |0 StatID:(DE-HGF)0040 |2 StatID |a Peer review unknown |
| 915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
| 915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
| 915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
| 915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
| 915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
| 915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
| 915 | _ | _ | |0 StatID:(DE-HGF)0300 |2 StatID |a DBCoverage |b Medline |
| 915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
| 915 | _ | _ | |0 StatID:(DE-HGF)1040 |2 StatID |a DBCoverage |b Zoological Record |
| 920 | 1 | _ | |0 I:(DE-Juel1)IEK-7-20101013 |g IEK |k IEK-7 |l Stratosphäre |x 0 |
| 970 | _ | _ | |a VDB:(DE-Juel1)138877 |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a ConvertedRecord |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a I:(DE-Juel1)IEK-7-20101013 |
| 980 | _ | _ | |a UNRESTRICTED |
| 981 | _ | _ | |a I:(DE-Juel1)ICE-4-20101013 |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|