001     22367
005     20240911115616.0
024 7 _ |2 DOI
|a 10.1016/j.jqsrt.2012.05.001
024 7 _ |2 WOS
|a WOS:000306615400004
037 _ _ |a PreJuSER-22367
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Spectroscopy
100 1 _ |0 P:(DE-HGF)0
|a Funke, B.
|b 0
245 _ _ |a GRANANDA: A Generic RAdiative traNsfer AnD non-LTE population
260 _ _ |a New York, NY [u.a.]
|b Elsevier
|c 2012
300 _ _ |a 1771 - 1817
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 26344
|a JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER
|v 113
|y 14
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a We would like to acknowledge the enormous effort of Alain Barbe, Claude Camy-Peiret, and Jean-Marie Flaud for improving and supplying spectroscopic data that are crucial for the non-LIE studies. We give special thanks to Jean-Marie Flaud for providing the spectroscopic data for many of the O3 and NO2 hot bands in addition to those in HITRAN2008. We also thank F.J. Martin-Torres for useful advices during the early development of the algorithm, and Miguel A. Lopez-Valverde, Sergio Gil-Lopez, Mariliza Koukouli and Diego Bermejo-Pantaleon for useful comments and suggestions. The IAA team was partially supported by the Spanish MCINN under projects AYA2008-03498/ESP, AYA2011-23552, "ASTROMOL" CSD2009-00038, and EC FEDER funds.
520 _ _ |a We present in this paper the Generic RAdiative traNsfer AnD non-LTE population Algorithm (GRANADA). This model is able to compute non-LIE populations for vibrational, rotational, spin (i.e., NO and OH), and electronic (i.e., O-2) states in a given planetary atmosphere. The model is very flexible and can be used for computing very accurate non-LIE populations or for calculating reasonably accurate but at high speed non-LIE populations in order to implement it into non-LIE remote sensing retrievals. We describe the model in detail and present an update of the non-LIE collisional processes and their rate coefficients for the most important molecules in Earth's atmosphere. In addition, we have applied the model to the most important atmospheric infrared emitters including 13 species (H2O, CO2, O-3, N2O, CO, CH4, O-2, NO, NO2, HNO3, OH, N-2, and HCN) and 460 excited vibrational or electronic energy levels. Non-LIE populations for all these energy levels have been calculated for 48 reference atmospheres expanding from the surface up to 200 km, including seasonal (January, April, July and October), latitudinal (75 degrees S, 45 degrees S, 10 degrees S, 10 degrees N, 45 degrees N, 75 degrees N) and diurnal (day and night) coverages. The effects of the most recent updates of the non-LIE collisional parameters on the non-LIE populations are briefly described. This climatology is available online to the community and it can be used for estimating non-LTE effects at specific conditions and for testing and validation studies. (C) 2012 Elsevier Ltd. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK491
|2 G:(DE-HGF)
|a Atmosphäre und Klima
|c P23
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Infrared emissions
653 2 0 |2 Author
|a Non-LTE
653 2 0 |2 Author
|a Earth's atmosphere
653 2 0 |2 Author
|a Climatology
653 2 0 |2 Author
|a H2O
653 2 0 |2 Author
|a CO2
653 2 0 |2 Author
|a O-3
653 2 0 |2 Author
|a N2O
653 2 0 |2 Author
|a CO
653 2 0 |2 Author
|a CH4
653 2 0 |2 Author
|a O-2
653 2 0 |2 Author
|a NO
653 2 0 |2 Author
|a NO2
653 2 0 |2 Author
|a HNO3
653 2 0 |2 Author
|a OH
653 2 0 |2 Author
|a N-2
653 2 0 |2 Author
|a HCN
700 1 _ |0 P:(DE-HGF)0
|a López-Puertas, M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Garda-Comas, M.
|b 2
700 1 _ |0 P:(DE-Juel1)129128
|a Kaufmann, M.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB64846
|a Stiller, G.P.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)1491916-3
|a 10.1016/j.jqsrt.2012.05.001
|g Vol. 113, p. 1771 - 1817
|p 1771 - 1817
|q 113<1771 - 1817
|t Journal of quantitative spectroscopy & radiative transfer
|v 113
|x 0022-4073
|y 2012
856 7 _ |u http://dx.doi.org/10.1016/j.jqsrt.2012.05.001
909 C O |o oai:juser.fz-juelich.de:22367
|p VDB
|p VDB:Earth_Environment
913 1 _ |0 G:(DE-Juel1)FUEK491
|1 G:(DE-HGF)POF2-230
|2 G:(DE-HGF)POF2-200
|a DE-HGF
|b Erde und Umwelt
|k P23
|l Atmosphäre und Klima
|v Atmosphäre und Klima
|x 0
|z vormals P22
913 2 _ |a DE-HGF
|b Marine, Küsten- und Polare Systeme
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-249H
|2 G:(DE-HGF)POF3-200
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0040
|2 StatID
|a Peer review unknown
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|g IEK
|k IEK-7
|l Stratosphäre
|x 0
970 _ _ |a VDB:(DE-Juel1)138877
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21