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We introduce a method to obtain the specific heat of quantum impurity models via a direct calculation of the

impurity internal energy requiring only the evaluation of local quantities within a single numerical renormalization

group (NRG) calculation for the total system. For the Anderson impurity model we show that the impurity internal

energy can be expressed as a sum of purely local static correlation functions and a term that involves also the

impurity Green function. The temperature dependence of the latter can be neglected in many cases, thereby

allowing the impurity specific heat Cimp to be calculated accurately from local static correlation functions;

specifically via Cimp = ∂Eionic

∂T
+ 1

2

∂Ehyb

∂T
, where Eionic and Ehyb are the energies of the (embedded) impurity and

the hybridization energy, respectively. The term involving the Green function can also be evaluated in cases where

its temperature dependence is non-negligible, adding an extra term to Cimp. For the nondegenerate Anderson

impurity model, we show by comparison with exact Bethe ansatz calculations that the results recover accurately

both the Kondo induced peak in the specific heat at low temperatures as well as the high-temperature peak due

to the resonant level. The approach applies to multiorbital and multichannel Anderson impurity models with

arbitrary local Coulomb interactions. An application to the Ohmic two-state system and the anisotropic Kondo

model is also given, with comparisons to Bethe ansatz calculations. The approach could also be of interest within

other impurity solvers, for example, within quantum Monte Carlo techniques.
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I. INTRODUCTION

Quantum impurity models play an important role in

condensed matter physics, for example, as models of transi-

tion metal and rare-earth impurities in metals1 or two-level

systems2–6 and qubits7 interacting with an environment or

in describing the Kondo effect in nanoscale devices such as

molecular transistors,8–11 semiconductor quantum dots,12–14

carbon nanotubes,15 and magnetic ions such as Co16,17 or

Ce18 adsorbed on surfaces. In addition, they appear as the

effective models within dynamical mean field theory (DMFT)

treatments of strongly correlated electron systems, such as

heavy fermions and transition metal oxides.19–22 Hence, new

approaches to calculate their dynamic, thermodynamic, and

transport properties are potentially of wide interest.

The numerical renormalization group (NRG) method,23–26

in particular, has proven very successful for the study of quan-

tum impurity models. The method, described briefly in the next

section, gives both the thermodynamic,23–25,27 dynamic,28–35

and transport properties36 of quantum impurities. Thermody-

namic properties, such as the specific heat, are of particular

interest for bulk systems, such as dilute concentrations of

transition metal or rare-earth ions in nonmagnetic metals.1

A measurement of the temperature dependence of the specific

heat or susceptibility of such systems provides important in-

formation about their physical behavior, for example, whether

such systems exhibit Fermi liquid or non-Fermi liquid behavior

at low temperature and thus information about the nature of

their low-energy excitations.37,38

The usual approach to calculating the specific heat of

quantum impurity models within the NRG method consists

of a two-stage procedure24–27 in which the Hamiltonians of

the total system H is first diagonalized, followed by a similar

diagonalization for the host Hamiltonian H0. Here, H =
Himp + Hint + H0 is the Hamiltonian of a quantum impurity

(described by Himp), interacting with a host (described by H0)

via the interaction term Hint. From the eigenvalues of H

and H0, the grand canonical partition functions Z = Tr e−βH

and Z0 = Tr e−βH0 and the corresponding thermodynamic

potentials �(T ) = −kBT ln Z and �0(T ) = −kBT ln Z0 are

constructed, where β = 1/kBT is the inverse temperature.

The impurity contribution to the specific heat Cimp(T ) is then

obtained by subtraction via Cimp(T ) = C(T ) − C0(T ), where

C(T ) and C0(T ) are the specific heats of the total system and

of the host system, respectively,

C(T ) = −T
∂2�(T )

∂ T 2
= kBβ2〈(H − 〈H 〉)2〉, (1)

C0(T ) = −T
∂2�0(T )

∂ T 2
= kBβ2〈(H0 − 〈H0〉)2〉, (2)

Cimp(T ) = C(T ) − C0(T ). (3)

In this paper we present a new approach to the calculation

of the impurity internal energy and specific heat of quantum

impurity models within the numerical renormalization group

(NRG) method.23–26 It relies on expressing the impurity

internal energy in terms of local quantities, and as such is

not restricted to the NRG but may be implemented within any

impurity solver that calculates such quantities. The main result

of this paper is the (approximate) expression for the impurity

specific heat of the Anderson model (see Sec. III)

Cimp(T ) =
∂Eionic

∂T
+

1

2

∂Ehyb

∂T
, (4)

where Eionic = 〈Himp〉 and Ehyb = 〈Hint〉. The main advan-

tages of this approach are that (i) Eq. (4) involves only a first

temperature derivative and is expected to be more accurate

for numerical evaluations than Eqs. (1)–(3) which involve a

second temperature derivative of the thermodynamic potential,
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or the calculation of the total energy fluctuation; (ii) the host

contribution to the internal energy 〈H0〉 has been analytically

subtracted out (see Sec. III), so only the diagonalization of

H is required; (iii) only local static correlation functions

appearing in 〈Himp〉 and 〈Hint〉 are required; and (iv) as we

shall show, the new approach is less sensitive to discretization

effects of the host than the usual approach which evaluates

expectation values of extensive quantities. We illustrate the

method by applying it to the Anderson impurity model and

we compare the results for specific heats with those from the

conventional NRG approach27,36,39 and with exact results from

thermodynamic Bethe ansatz calculations.40–42

Early approaches to the specific heat of dilute Kondo

systems used an equation of motion decoupling scheme for the

Kondo model43 and expressed the impurity internal energy in

terms of the local T matrix. The results obtained for the specific

heat within this approximation were inadequate, violating,

for example, Fermi liquid properties at low temperatures.44

A formally exact expression for the internal energy of the

Anderson model, in terms of the local self-energy and the

local Green function, was obtained by Kjöllerström et al. in

Ref. 45. They evaluated the specific heat in the low-density

limit (corresponding to a small occupation of the local level)

obtaining correct results obeying Fermi liquid theory in this

limit.

The most reliable approaches to specific heats of quantum

impurity models are the Bethe ansatz method for integrable

models40–42,46–49 and the NRG method. An important aspect

of the latter, allowing it to access thermodynamic properties

on all temperature scales down to T = 0, is the use of a

logarithmic grid to represent the quasicontinuous spectrum

ω ∈ [−D, + D] of the host system H0. Thus ω → ωn =
±D�−n,n = 0,1, . . . , where the parameter � > 1 achieves

a separation of the many energy scales in H0 and thus in H

(see Sec. II). A large � ≫ 1 allows calculations to reach low

temperatures in fewer steps within the iterative diagonalization

procedure of the NRG, and, in addition, a large � ≫ 1 reduces

the size of the truncation errors at each step in this procedure.24

However, for � ≫ 1, specific heats (and also susceptibilities),

calculated by using a standard logarithmic grid, exhibit

discretization oscillations, especially at low temperatures.50

On the other hand, calculations at smaller � � 3,

with less severe discretization oscillations, are more prone

to truncation errors. In order to be able to carry out accurate

calculations at all temperatures, using � ≫ 1, an averaging

over several discretizations of the host degrees of freedom has

been introduced which essentially allows exact calculations to

be carried out.50,51 With this refinement, the NRG approach

has been used extensively in calculations of specific heats

of quantum impurity models,39 with applications to the two-

impurity Kondo model52,53 and the two-channel Anderson

models.54

The paper is organized as follows. In Sec. II the Anderson

impurity model is described, and the NRG is outlined together

with a brief description of how thermodynamic properties are

conventionally calculated within NRG (at � ≫ 1). In Sec. III

we describe our new approach to specific heats of quantum

impurity models using the Anderson impurity model as an

example (with some further details given in Appendix A). The

availability of exact Bethe ansatz results for this model40–42

allows a detailed evaluation of the accuracy of our new

approach to specific heats. Results at zero and finite magnetic

fields are presented in Sec. IV for the symmetric Anderson

model. These are compared to both exact Bethe ansatz results

and results obtained in the conventional NRG approach.

Section V contains results for the asymmetric model with

comparisons to corresponding Bethe ansatz calculations.

The thermodynamic Bethe ansatz (TBA) equations for the

Anderson impurity model and the details of their numerical

solution can be found in Appendix B. In Sec. VI we present

the generalization to multichannel and multiorbital Anderson

impurity models and to dissipative two-state systems. For

the Ohmic case, results for specific heats are compared

to corresponding Bethe ansatz results for the equivalent

anisotropic Kondo model (AKM). Section VII summarizes

the main results of this paper and discusses possible future

applications.

II. MODEL, METHOD, AND CONVENTIONAL APPROACH

TO THERMODYNAMICS

We consider the Anderson impurity model,55 described by

the Hamiltonian

H = Himp + H0 + Hint.

The first term Himp =
∑

σ εdd
†
σdσ + Und↑nd↓ describes the

impurity with local level energy εd and on-site Coulomb

repulsion U , the second term H0 =
∑

kσ ǫkc
†
kσ ckσ is the kinetic

energy of noninteracting conduction electrons with dispersion

εk , and the last term Hint =
∑

kσ Vk(c
†
kσdσ + d†

σ ckσ ) is the

hybridization between the local level and the conduction

electron states, with Vk being the hybridization matrix element.

We shall also consider the effect of a magnetic field of strength

B by adding a term HB = −gµBB Sz to H , where Sz is the

z component of the total spin (i.e., impurity plus conduction

electron spin), g is the electron g factor, and µB is the Bohr

magneton. We choose units such that g = µB = 1.

The NRG procedure consists of the following steps. First,

the conduction electron energies −D � εk � D, where D

is the half-bandwidth, are logarithmically discretized about

the Fermi level εF = 0, that is, ǫk → ǫn = ±D�−n,n =
0,1, . . . , where � > 1 is a momentum rescaling fac-

tor. We shall also consider generalized discretizations de-

fined by a parameter z, such that ǫ0 = ±D and ǫn =
±D�−n−(1−z),n = 1, . . . , with z = 1 recovering the usual

discretization. For � ≫ 1, discretization induced oscilla-

tions of period ln � can be eliminated by averaging re-

sults for several z in (0,1].50,51 Second, the operators

cnσ ,n = 0,1, . . . are rotated to a new set fnσ ,n = 0,1, . . . ,

with Vf0σ =
∑∞

n=0 Vkn
cnσ , such that the discretized con-

duction band H0 =
∑∞

n=0σ ±En(z)c
†
nσ cnσ , with, for example,

En(z) = 1
2
(1 + �−1)D�−n for z = 1, takes the tridiagonal

form H0 →
∑∞

n=0σ ǫ̃n(z)f
†
nσfnσ +

∑∞
n=0σ tn(z)(f

†
nσfn+1σ +

f
†
n+1σ fnσ ) in the new basis. Finally, within this new basis,

the sequence of truncated Hamiltonians Hm,m = 0,1, . . . ,

where Hm = Himp + Hhyb +
∑m

n=0σ ǫ̃n(z)f
†
nσfnσ +

∑m−1
n=0σ

tn(z) (f
†
nσ fn+1σ + f

†
n+1σ fnσ ), with Hhyb = V

∑

σ (f
†
0σ dσ +

d†
σf0σ ), is iteratively diagonalized by using the recursion
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relation Hm+1 = Hm +
∑

σ ǫ̃m+1(z)f
†
m+1σfm+1σ +

∑

σ tm(z)

(f
†
mσfm+1σ + f

†
m+1σ fmσ ). This procedure24–26 yields the

eigenstates |p〉m and eigenvalues Em
p on a decreasing set of

energy scales ωm(z) ∼ tm(z),m = 0,1, . . . . Since the number

of states increases as 4m+2, only the lowest states are retained

for m � m0, where typically m0 � 4−5. This is implemented

either by (i) specifying an approximately constant number of

states Nkeep to retain at each m � m0, and m0 will be fixed by

the precise value of Nkeep, or (ii) by specifying that only those

states with rescaled energies (Em
p − Em

GS)/tm(z) < ec(�) be

retained for m � m0, for some predefined m0, where Em
GS is

the (absolute) ground-state energy at iteration m and ec(�) is

�-dependent cut-off energy. Combining the information from

all iterations then allows the calculation of thermodynamics on

all temperature scales of interest.39,50 For most of the results in

this paper we used the truncation scheme (ii) with m0 = 4−5

and ec(�) = 20
√

�, similar to the choice in Ref. 39. Some

calculations using the truncation scheme (i) with Nkeep = 860

were also carried out in Sec. VI B. Both schemes were found to

work well by comparison with exact Bethe ansatz calculations.

Whereas in scheme (i) a fixed number Nkeep of levels is retained

for all iterations m � m0, in scheme (ii) the number of retained

states, initially large for m � m0 (typically several thousand),

starts to decrease with increasing m, eventually saturating to a

few hundred states at m ≫ m0 (e.g., for � = 4). While in both

schemes only the retained states of iteration m are used to set

up the Hamiltonian Hm+1 for the next iteration, all states of

iteration m are available, and are used, in practice, to calculate

the thermodynamics.

The specific heat is calculated within the approach of

Campo and Oliveira in Ref. 51, which we shall refer to

as the “conventional” approach: For any temperature T we

choose the smallest m such that kBT > tm(z) and we use the

eigenvalues of Hm to evaluate the partition function Zm(T ) =
∑

p e−Em
p /kBT . The expectation value 〈H 〉 is then calculated,

followed by 〈(H − 〈H 〉)2〉 and the specific heat C(T ) [in ad-

dition, the thermodynamic potential �(T ) = −kBT ln Zm(T )

may also be calculated]. Calculations are carried out for

several values of the z parameter and then averaged. In the

calculations reported below, we choose z = (2i − 1)/2nz,i =
1, . . . ,nz with nz = 2, 4, or 8. This procedure is repeated

for the conduction band Hamiltonian H0 to obtain the host

contribution to the specific heat C0(T ). Finally, the impurity

specific heat is obtained via Cimp(T ) = C(T ) − C0(T ). The

above prescription works well for � � 4 since the use of large

� reduces the size of truncation errors during the iterative

diagonalization of H and H0.24 Furthermore, the use of

large � implies that the highest states of Hm have energies

≫tm(z) ∼ T so that Zm(T ) is a good approximation to the

partition function of the infinite system at temperature T . In

addition to the specific heat, we also calculate the impurity

contribution to the entropy Simp(T ) = S(T ) − S0(T ), where

S(T ) and S0(T ) are the entropies for H and H0, respectively,

and

S(T ) = −
∂�

∂T
= kB ln Z(T ) + 〈H 〉/T , (5)

S0(T ) = −
∂�0

∂T
= kB ln Z0(T ) + 〈H0〉/T . (6)
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FIG. 1. (Color online) Temperature dependence of (a) the impu-

rity entropy Simp(T ), and (b) the impurity specific heat Cimp(T ) for the

symmetric Anderson model with U/
0 = 12 and 
0 = 0.001D. The

calculations are for � = 4 with an energy cut-off ec(� = 4) = 40,

without z averaging [nz = 1, z = 1 (dashed lines)], and with z

averaging [nz = 2, z = 1/4, 3/4 (solid lines)]. For � = 4 two z

values suffice to eliminate the discretization oscillations.

Unless otherwise specified, the NRG calculations presented

in this paper will be for a band of half-width D = 1 and

a constant particle-hole symmetric density of states NF =
1/2D. The hybridization strength 
0 defined as the half-width

of the resonant level is given by 
0 = πNF V 2. Calculations

for the positive and negative-U Anderson models include a

U (1) symmetry for total electron number conservation and

SU(2) symmetry for total spin conservation. We use the

discretization scheme of Campo and Oliveira in Ref. 51.

Figure 1 shows the temperature dependence of the specific

heat and entropy, calculated with the above procedure,

for the symmetric Anderson model with U/
0 = 12 and


0 = 0.001D. The calculations are for � = 4 using an energy

cut-off ec(� = 4) = 40, both without z averaging (nz = 1)

and with z averaging (nz = 2). Note the aforementioned

oscillations in the case of no z averaging (nz = 1). For � = 4,

two z values suffice to eliminate the discretization oscillations

(whereas for � = 10, four values are required). In order to

quantify the accuracy of the NRG calculations, we also solved

numerically the thermodynamic Bethe ansatz equations for the

Anderson model and calculated the entropy and specific heat

(see Appendix B for details). A comparison of the z-averaged

NRG calculations with the exact Bethe ansatz results, shown in

Fig. 2, indicates very good agreement. Nevertheless, in the next

section we show that the specific heat can be calculated directly

from the impurity contribution to the internal energy in terms of

local static correlation functions and that discretization effects

within this approach are less pronounced than those above.

III. IMPURITY INTERNAL ENERGY

AND SPECIFIC HEATS

The impurity internal energy is defined by Eimp = Etotal −
E0, where Etotal = 〈H 〉 and E0 = 〈H0〉 =

∑

kσ ǫk〈c†kσ ckσ 〉0,

where the subscript 0 denotes a thermodynamic average for

noninteracting conduction electrons (i.e., impurity is absent).
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FIG. 2. (Color online) Temperature dependence of (a) the impu-

rity entropy Simp(T ) and (b) the impurity specific heat Cimp(T ) for

the symmetric Anderson model with U/
0 = 12 and 
0 = 0.001D.

Symbols: NRG calculations using the conventional approach. Solid

lines: Bethe ansatz calculations. The NRG calculations are z averaged

with nz = 2 and other parameters as in Fig. 1.

We have

E0 =
∑

σ

∫

dǫf (ǫ)ǫN (ǫ), (7)

where f (ǫ) is the Fermi function and N (ǫ) =
∑

k δ(ǫ − ǫk)

is the noninteracting conduction electron density of states per

spin. Etotal has four contributions:

Etotal = Eocc + Edocc + Econd + Ehyb, (8)

where Eocc =
∑

σ εd〈ndσ 〉, Edocc = U 〈nd↑nd↓〉, Econd =
∑

kσ ǫk〈c†kσ ckσ 〉, and Ehyb = V
∑

kσ 〈c†kσdσ + d†
σ ckσ 〉. The first

two contributions are evaluated as thermodynamic averages

within the NRG calculation, requiring the calculation of

matrix elements of
∑

σ ndσ and the double occupancy operator

D̂occ = nd↑nd↓. The contribution Ehyb may also be evaluated as

a thermodynamic average Ehyb = V
∑

σ 〈d†
σ f0σ + H.c.〉. For

the discussion below it is useful to note that the contribution

Ehyb can also be expressed in terms of the local retarded

d-electron Green function Gdσ (ω) = 〈〈dσ ; d†
σ 〉〉ω+iδ and the

hybridization function 
(ω) =
∑

k V 2/(ω + iδ − ǫk) as

Ehyb = −
2

π

∑

σ

∫

dωf (ω)Im [Gdσ (ω)
(ω)] . (9)

Next, consider the contribution Econd =
∑

kσ ǫk〈c†kσ ckσ 〉.
This is not simply E0 since the impurity affects the conduction

electrons once V is finite. It can be evaluated from the equation

of motion of the retarded conduction electron Greens function

Gkσ (ω) = 〈〈ckσ ; c
†
kσ 〉〉ω+iδ:

Gkσ = G0
kσ + G0

kσTσG0
kσ . (10)

Here Tσ (ω) = V 2Gdσ (ω) is the local T matrix and G0
kσ (ω) =

1/(ω + iδ − ǫk) is the noninteracting conduction electron

Greens function. Using

〈c†kσ ckσ 〉 = −
1

π

∫

dωf (ω)Im(〈〈ckσ ; c
†
kσ 〉〉)

we find for Econd,

Econd = E0 + Eint,

where

Eint = −
1

π

∑

σ

∫

dωf (ω)

∫

dǫIm

[

ǫV 2N (ǫ)

(ω + iδ − ǫ)2
Gdσ (ω)

]

= −
1

π

∑

σ

∫

dωf (ω)Im [Gdσ (ω)I (ω)] ,

where I (ω) is given by

I (ω) = −
1

π

∫

dǫ
ǫ
I(ǫ)

(ω + iδ − ǫ)2
= −

∂

∂ω
[ω
(ω)] ,

with 
I(ǫ) = Im [
(ǫ + iδ)] = −πV 2N (ǫ), and we evaluated

I (ω) analytically by noting that 
(ω + iδ) has the same

properties as a retarded Green function (see Appendix A for

details). We therefore find

Eint =
1

π

∑

σ

∫

dωf (ω)Im

{

Gdσ (ω)
∂

∂ω
[ω
(ω)]

}

= E
(1)
int + E

(2)
int , (11)

E
(1)
int =

1

π

∑

σ

∫

dωf (ω)Im [Gdσ (ω)
(ω)] , (12)

E
(2)
int =

1

π

∑

σ

∫

dωf (ω)Im

[

Gdσ (ω)ω
∂
(ω)

∂ω

]

. (13)

From this and Eq. (9) we see that E
(1)
int = − 1

2
Ehyb. Hence, the

impurity contribution to the internal energy Eimp = Etotal − E0

is given by

Eimp = Eocc + Edocc + 1
2
Ehyb + E

(2)
int

= Eionic + 1
2
Ehyb + E

(2)
int , (14)

where Eionic = 〈Himp〉 = Eocc + Edocc is adiabatically con-

nected to the energy of the impurity decoupled from the band

(i.e., its energy at V → 0). All contributions to Eimp, except for

the last one, can be evaluated as thermodynamic averages of

local static correlation functions: The contribution E
(1)
int from

the band which involves a finite frequency Greens function

has been related to Ehyb, which can be evaluated as local static

correlation function V
∑

σ 〈d†
σ f0σ + H.c.〉. The contribution

E
(2)
int also involves a finite frequency Greens function, but

cannot be expressed as a local static correlation function.

Its temperature dependence, however, is negligible since the

main temperature dependence arises from the Fermi window

|ω| < T , but this region is cut out in E
(2)
int due to the factor

of ω. In addition, for many cases of interest ∂ [
(ω)] /∂ω

is small and vanishes in the wide band limit: D → ∞ and


0 = πN (0)V 2 fixed. For example, for a constant density

of states it equals 2
0

πD
[1 − (ω/D)2]−1 ∼ 
0/D for ω ≪ D.

Thus, to a very good approximation, which we shall quantify

in the rest of the paper with detailed numerical calculations and

comparisons to exact Bethe ansatz results, we can approximate

the impurity contribution to the specific heat and entropy via
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Ēimp = Eionic + 1
2
Ehyb as

Cimp(T ) =
∂Ēimp

∂T
=

∂Eocc

∂T
+

∂Edocc

∂T
+

1

2

∂Ehyb

∂T

=
∂Eionic

∂T
+

1

2

∂Ehyb

∂T
, (15)

Simp(T ) =
∫ T

0

dT ′ Cimp(T ′)

T ′ . (16)

The omitted term ∂E
(2)
int /∂T in (15), as argued above, has a

negligible temperature dependence (although its magnitude is

not necessarily always small compared to the terms retained).

Notice that Ēimp is made up of a term due to the partial

occupation of the local resonant level (Eocc), a term due to

the Coulomb repulsion of electrons in this level (Edocc), and

a term due to the energy gained by hybridization of the local

level with the conduction electrons (Ehyb/2), that is, it involves

only local static correlation functions. Such quantities can

be calculated very accurately and efficiently within the NRG

method, within a single calculation for the total system only,

a significant advantage of this approach. In some situations,

the hybridization function 
(ω) may be strongly asymmetric

and have a strong energy dependence close to ω = 0. In such

cases, the term E
(2)
int can be calculated via the local spectral

function and included in Eimp, which is possible within the

NRG, at somewhat higher numerical cost. Another advantage

of the present approach is that discretization oscillations are far

smaller for local quantities appearing in Ēimp than for extensive

quantities, such as 〈H 〉 and 〈(H − 〈H 〉)2〉 appearing in the

conventional approach to specific heats. Figure 3 shows the

specific heat and entropy calculated with the above method

for the same parameters as in Figs. 1 and 2, with and without

z averaging. One sees that the discretization oscillations in

the case of no z averaging (nz = 1 curves) are drastically
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FIG. 3. (Color online) Temperature dependence of (a) the impu-

rity entropy Simp(T ) and (b) the impurity specific heat Cimp(T ) for

the symmetric Anderson model with U/
0 = 12 and 
0 = 0.001D

calculated within NRG using the new approach for � = 4 with an

energy cutoff ec(� = 4) = 40. Solid lines: nz = 2 (z averaging).

Dashed lines: nz = 1 (no z averaging). For � = 4 two z values thus

suffice to eliminate the discretization oscillations at nz = 1.
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FIG. 4. (Color online) (a) The individual contributions Eocc,

Edocc, and Ehyb to Eimp as a function of temperature (in units

of 
0) for the symmetric model with parameters as in Fig. 1 (z

averaged with nz = 2). (b) Temperature derivatives of the above,

yielding the relative contributions Cocc, Cdocc, and Chyb to the specific

heat Cimp.

smaller than for the corresponding nz = 1 results from the

conventional approach in Fig. 1. Including z averaging makes

the results of the new procedure indistinguishable from the

Bethe ansatz calculations, as will be discussed in detail in

Secs. IV and V.

In Fig. 4(a) we show the different contributions Eocc, Edocc,

and Ehyb/2 to the impurity internal energy for the symmetric

Anderson model. Their temperature derivatives Cocc, Cdocc,

and Chyb give the relative contributions of these terms to the

impurity specific heat Cimp and are shown in Fig. 4(b). Notice

that the Kondo induced peak in Cimp at low temperatures

results from a delicate balance of the hybridization (Chyb)

and Coulomb contributions (Cdocc), while the peak due to

the resonant level at high temperatures is mainly due to the

Coulomb term. The latter trend persists also for the asymmetric

model, as shown in Fig. 5. Notice also that the gain in

energy due to hybridization diminishes at high temperatures,

reflecting the decoupling of the impurity from the conduction

electrons in this limit. In general, however, the interaction of

the impurity with the environment via the hybridization term

provides an essential contribution at all nonzero hybridization

strengths.

We now quantify the error in neglecting ∂E
(2)
int (T )/∂T in

Eq. (15) for the calculation of impurity specific heats by (a)

comparing the result for Cimp obtained within the new method

with the Bethe ansatz calculations and (b) explicitly calculating

the contribution ∂E
(2)
int (T )/∂T . Figure 6(a) shows the compar-

ison to the Bethe ansatz calculation, where we also include

the specific heat from the conventional approach. The relative

deviation of the NRG calculations to the Bethe ansatz, shown in

Fig. 6(b), is below 1% for all temperatures T < 0.01 = 10
0.

For T ≪ TK, the relative error in Cimp from the internal energy

is 0.1% and 0.5% in the conventional approach. The relative

error exhibits remnants of the discretization oscillations, which

are not completely eliminated with z averaging. Notice also

that the errors in the two NRG calculations have the same

error (relative to the Bethe ansatz) in the high-temperature
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FIG. 5. (Color online) (a) The individual contributions Eocc,

Edocc, and Ehyb to Eimp as a function of temperature (in units of 
0)

for the asymmetric model with parameters as in Fig. 1, but for an

asymmetric level position εd/
0 = −1 (z averaged with nz = 2).

(b) Temperature derivatives of the above, yielding the relative

contributions Cocc, Cdocc, and Chyb to the specific heat Cimp.

limit T ≫ 
0. Hence, the latter error is not due to neglect of

E
(2)
int in Eq. (14). Instead, it reflects (a) the different high-energy

cut-off schemes in NRG and Bethe ansatz and (b) the finite

size errors in the high-energy excitation spectrum in NRG

since the latter stem from the shortest chains diagonalized

(typically m = 4–6), which are also the ones most sensitive

to the logarithmic discretization. The fact that the errors in

both NRG calculations also correlate at lower temperatures

(T � 
0) suggests that the neglect of E
(2)
int in Eq. (14) is not

the main source of error in calculating Cimp(T ). An explicit

calculation that illustrates this is shown in Fig. 7. As stated

above, the value of E
(2)
int is of order 
0/π , however, one clearly
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FIG. 6. (Color online) (a) Comparison of specific heat Cimp(T )

from the impurity internal energy (solid line) and conventional

approach (dashed line) with the Bethe ansatz calculation (symbols)

for the symmetric Anderson model with parameters as in Fig. 1. NRG

parameters also as in Fig. 1 with nz = 2. (b) The relative deviation

with respect to the Bethe ansatz result of the new (solid line) and

conventional (dashed line) approaches.
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FIG. 7. (Color online) (a) The contribution E
(2)
int to Eimp as

a function of temperature compared with Eocc, Edocc, and Ehyb

(in units of 
0) for the asymmetric model. Model parameters:

U = 12
0, 
0 = 0.001D, εd/
0 = −2 with a semi-elliptic hy-

bridization function Im[
(ω)] = −
0

D

√

(D2 − ω2). A small � =
1.5 was used, which allows the spectral function entering E

(2)
int

to be obtained without z averaging. (b) The contribution Cderiv =
∂E

(2)
int (T )/∂T to Cimp. The relative size of Cderiv to Cimp lies

between 0.2% and 0.5% for all temperatures, except at temperatures

approaching the bandwidth D = 1.

sees in Fig. 7(a) that E
(2)
int has little temperature dependence

(relative to the other contributions) for all temperatures

extending up to the bandwidth D = 1. Its relative contribution

to the impurity specific heat, shown in Fig. 7(b), for an

energy dependent 
(ω), is negligible, typically contributing

below 0.5%.

IV. RESULTS FOR THE SYMMETRIC MODEL

In this section we show results for the entropy and

specific heat of the Anderson model at the particle-hole

symmetric point εd = −U/2. Results for zero magnetic field

and increasing correlation strength U/
0 are presented in

Sec. IV A and results for finite magnetic fields are given in

Sec. IV B.

The symmetric Anderson model has been investigated in

detail1 and is well understood. For U/
0 ≫ 1 and −εd ≫ 
0,

a local spin S = 1/2 magnetic moment forms on the impurity.

In this limit, the physics of the symmetric model at low

temperatures T ≪ min(|εd + U |,|εd |,D) is that of the Kondo

model

HK = H0 + JS · s0, (17)

where J is an antiferromagnetic exchange coupling between

the local spin S and the conduction electron spin-density s0 at

the impurity site. The value of J is given by the Schrieffer-

Wolff transformation56 J = 4V 2/U . The low-temperature

properties (for U ≫ 
0) are universal functions of T/TK

and B/TK where we choose to define the Kondo scale from

the Bethe ansatz result for the T = 0 susceptibility χ (0) via

χ (0) = (gµB)2/4TK. For U ≫ 
0, TK is given by

TK =
√

U
0/2e−πU/8
0+π
0/2U , (18)
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FIG. 8. (Color online) Temperature dependence of (a) the impu-

rity specific heat Cimp(T ) and (b) the impurity entropy Simp(T )/ ln(2)

for the symmetric Anderson model with 
0 = 0.001D and increasing

values of the Coulomb interaction: U/
0 = 4, 8, 12. Arrows in (a)

indicated the Kondo scale TK defined in Eq. (18). Symbols: new

approach using NRG with � = 4 with an energy cutoff ec(� = 4) =
40, and z averaging [nz = 2, z = 1/4, 3/4]. Lines: corresponding

Bethe ansatz calculations.

within corrections which are exponentially small in U/π
0

(see Ref. 1). For U = 0, the symmetric Anderson model

reduces to a resonant level model and the relevant low-

temperature scale is then 
0.

A. Zero magnetic field

A comparison of the new approach with Bethe ansatz

calculations is shown in Fig. 8 for the temperature dependence

of the impurity specific heat and entropy for increasing values

of the Coulomb interaction U/
0. For U/
0 = 12, the Kondo

induced peak in the specific heat at Tp = αTK with α ≈ 0.29

is well separated from the peak at T ≈ |εd | due to the resonant

level. With decreasing U/
0, the Kondo effect is suppressed

and the Kondo induced peak in C(T ) eventually merges with

the peak due to the resonant level for U/
0 → 0. Good

agreement between the NRG and the exact Bethe ansatz

calculations is seen for all values of U/
0.

B. Finite magnetic field

At finite magnetic fields B > 0, the SU(2) spin symmetry

which we use in the NRG calculations, is broken. Therefore,

in order to carry out calculations at finite magnetic field

B > 0, preserving the numerical advantages of the full

SU(2) symmetry, such as the increased number of states

that can be retained, we obtained the finite field results by

mapping the symmetric positive-U Anderson model onto the

negative-U Anderson model in the absence of a magnetic

field but with local level given by εd = −U/2 − B/2 with U

negative.57,58 This correspondence results from a particle-hole

transformation on the down spins only: d↓ → d
†
↓, d↑ → d↑,

and ck↓ → c
†
−k↓,ck↑ → ck↑ with a particle-hole symmetric

band ǫk = −ǫ−k .
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FIG. 9. (Color online) Temperature dependence of the impurity

specific heat Cimp(T ,B) for the symmetric Anderson model for

U/
0 = 12, 
0 = 0.001D, and increasing values of the mag-

netic field B/TK � 1, where the Kondo scale T is defined in

Eq. (18). Symbols: NRG calculations � = 4 with an energy cut-off

ec(� = 4) = 40, and z averaging [nz = 2, z = 1/4, 3/4]. Lines:

Bethe ansatz calculations. Inset (a): TKγ (T ,B) versus T/TK for

several values of B/TK � 2, where γ (T ,B) = Cimp(T ,B)/T .

Figure 9 shows the temperature dependence of Cimp(T ,B)

for B/TK � 1 using our new approach and compared with

Bethe ansatz calculations. The Kondo peak in the specific

heat shifts to higher fields with increasing B and its position

scales as B2/TK for TK ≪ B ≪ εd . In contrast, the resonant

level peak remains approximately fixed at T ≈ εd . As B

approaches the value εd , the two peaks merge into one

peak at T ≈ εd , with approximately twice the height of the

B = 0 resonant level peak, and containing the whole entropy

Simp/kB = ln(4). The low-field behavior of Cimp(T ,B), also

compared to Bethe ansatz calculations, is shown in Fig. 9(a) as

TKγ (T ,B) = Cimp(T ,B)/(T/TK) versus T/TK for B/TK � 2.

For T ,B → 0, γ (T ,B) → γ (0,0) ∼ 1/TK, where γ (0,0) is the

linear coefficient of specific heat. This is strongly enhanced

for U/
0 ≫ 1 due to the exponential decrease of TK. A finite

magnetic field of order TK significantly suppresses the Kondo

effect and results in smaller values of γ (0,B). As another

check on the accuracy of our calculations, we estimate the

Wilson ratio RW = 4π2χ (0)/3γ (0,0). This takes the value 2

in the Kondo regime of the symmetric Kondo model (i.e.,

for U ≫ 
0). From the definition of TK we have that the

susceptibility χ (0) = 1/4TK, and from Fig. 9(a) we extract

γ (0,0) ≈ 1.64/TK, resulting in RW ≈ 2.006, that is, a relative

error in RW below 1%.

V. RESULTS FOR THE ASYMMETRIC MODEL

Figure 10 shows the impurity specific heat versus temper-

ature for the asymmetric Anderson model, that is, for εd >

−U/2, calculated within the new approach. For comparison

we also show the corresponding Bethe ansatz calculations. One

sees again excellent agreement at all temperatures between

the two methods. Results for εd < −U/2 are not shown

since these can be obtained from results for εd > −U/2 by
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FIG. 10. (Color online) Temperature dependence of Cimp(T ) for

U/
0 = 12, 
0 = 0.001D, and local level positions εd/
0 ranging

from Kondo (εd/
0 � −1), mixed valence (|εd/
0| � 1), and empty

orbital (εd/
0 > 1) regimes. Symbols: NRG calculations (new

approach, z averaging, and NRG parameters as in Fig. 1). Lines:

Bethe ansatz calculations.

noting that the Anderson model with parameters εd ,U,V

transforms, under a particle-hole transformation applied to

both spin species, to an Anderson model with parameters

−(εd + U ),U,V . This holds for a particle-hole symmetric

constant density of states, the case considered here.

The specific heat curves for the asymmetric model are

more complicated than those of the symmetric model. In the

latter, the relevant excitations were the low-temperature spin

flip excitations, characterized by the Kondo scale TK, and the

excitations involving addition or removal of an electron from

the resonant level, both characterized by an energy |εd | = U/2.

This accounts for the two peaks in the specific heat of the

symmetric model: A high-temperature peak at T ≈ |εd | and

a low-temperature Kondo induced peak at T ≈ TK. For the

asymmetric Anderson model, three types of excitation are

possible: Low-temperature spin flip excitations, associated

with the Kondo scale TL =
√

U
0/2e−π |εd | |εd+U |/2U
0 of the

asymmetric model,1 and excitations associated with (i) remov-

ing an electron from a singly occupied level (with energy scale

|εd |) and (ii) removing an electron from a doubly occupied

level (with energy scale |εd + U |). Thus, three peaks can be

present in Cimp(T ): A Kondo induced peak at T ≈ TL, and

two charge fluctuation induced peaks at T ≈ T1 = |εd | and

T ≈ T2 = |εd + U |, respectively. In Fig. 10 the two high-

temperature peaks are seen in the mixed valence regime and

partly also in the empty orbital regime (where the upper peak

at T2 appears as a shoulder of the main peak at T1). However,

in the Kondo regime, the cases εd/
0 = −5,−3 with the

choice U = 12
0 result in T1/
0 = 5, 3 and T2/
0 = 7, 9.

In these cases, T1 and T2 are too close for separate peaks to

be seen. In order to clarify this, we carried out calculations for

U = 48
0 ≫ 
0 and εd/
0 = −10, −8, −6, −4, −2 in the

Kondo regime, for which T1/
0 = 10, 8, 6, 4, 2 and T2/
0 =
38, 40, 42, 44, 46 ≫ T1/
0 are disparate scales. Figure 11

shows how the peaks at T ≈ T1 and T ≈ T2 evolve from the

peak at T ≈ |εd | = U/2 of the symmetric model (dashed line

in Fig. 11) on increasing εd above −U/2. Simultaneously,
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FIG. 11. (Color online) Temperature dependence of Cimp(T ) for

U/
0 = 48, 
0 = 0.0001D, and local level positions εd/
0 = −10,

−6, −4, −2 (Kondo regime), εd/
0 = −1, 0, +1 (mixed valence

regime), and εd/
0 = +5 (empty orbital regime). NRG using the new

approach (symbols) and conventional approach (solid lines) [� =
20,nz = 4,ec(�) = 130]. Dashed line: resonant level peak in Cimp

at T/
0 ≈ |εd |/
0 = U/2
0 = 24 for the symmetric model (the

Kondo induced peak at much lower T is not shown). The two high-

temperature peaks of the asymmetric model evolve from this peak

when the asymmetry is finite.

the Kondo peak in the specific heat at TL shifts to higher

temperatures and eventually merges with the peak at T1 when

the mixed valence regime is reached (i.e., for εd = −
0).

Thereafter, only the high-temperature peaks at T1 and T2 are

present. Notice also that in the mixed valence regime T1 differs

significantly from |εd |, a result of nontrivial renormalizations

present in the mixed valence regime, but absent in the empty

orbital regime.

VI. GENERALIZATION TO OTHER MODELS

The approach of Sec. III can be straightforwardly gener-

alized to multiorbital and multichannel Anderson impurity

models with arbitrary local Coulomb interactions, as we briefly

outline in Sec. VI A. In addition, in Sec. VI B we discuss its

application to dissipative two-state systems and the anisotropic

Kondo model (AKM).

A. Multiorbital and multichannel Anderson models

The multiorbital and multichannel Anderson impurity

model is given by H = Himp + H0 + Hint, where Himp =
∑

ασ εαd†
ασ dασ + HC(U,U ′,J ) describes the impurity with

a set of local levels having energies εdα,α = 1, . . . ,g

and HC(U,U ′,J ) is the local Coulomb interaction in-

volving intraorbital U , interorbital U ′, and a Hund’s ex-

change term J . The conduction electrons are described

by H0 =
∑

kασ ǫkαc
†
kασ ckασ , where ǫkα is the kinetic en-

ergy of electrons in band α. These bands hybridize with

hybridization strengths Vα,α = 1, . . . ,g to the local lev-

els via Hint =
∑

kασ Vα(c
†
kασdασ + d†

ασ ckασ ). Let 
α(ω) =
∑

k V 2
α /(ω − ǫkα) denote the hybridization functions charac-

terizing Hint. Proceeding as in Sec. III, we write the impurity
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internal energy as Eimp = Etotal − E0, where Etotal = 〈H 〉
is the total energy and E0 = 〈H0〉 =

∑

kασ ǫkα〈c†kασ ckασ 〉0

is the energy of the noninteracting conduction electrons in

the absence of the impurity. The latter is given by E0 =
∑

ασ

∫

dǫf (ǫ)ǫNα(ǫ), where f (ǫ) is the Fermi function

and Nα(ǫ) =
∑

k δ(ǫ − ǫkα) is the noninteracting conduction

electron density of states per spin for band α. Etotal is

a sum of local occupation number contributions Eocc =
∑

ασ 〈εαnασ 〉 and local Coulomb terms EC = 〈HC(U,U ′,J )〉
and two further terms involving the interacting band Econd =
∑

kασ ǫkα〈c†kασ ckασ 〉 and the hybridization energy Ehyb =
∑

ασ Vα〈d†
ασ f0ασ + H.c.〉, where Vαf0ασ =

∑

k ckασ :

Etotal = Eocc + EC + Econd + Ehyb. (19)

We evaluate the latter two contributions as in Sec. III, finding

Ehyb = −
2

π

∑

ασ

∫

dωf (ω)Im [Gdασ (ω)
α(ω)] , (20)

and Econd = E0 + Eint, where

Eint =
1

π

∑

ασ

∫

dωf (ω)Im

{

Gdασ (ω)
∂

∂ω
[ω
α(ω)]

}

= E
(1)
int + E

(2)
int , (21)

E
(1)
int =

1

π

∑

ασ

∫

dωf (ω)Im [Gdασ (ω)
α(ω)] , (22)

E
(2)
int =

1

π

∑

ασ

∫

dωf (ω)Im

[

Gdασ (ω)ω
∂
α(ω)

∂ω

]

, (23)

and Gdασ (ω) is the retarded Green function for local level

α. Combining E
(1)
int with Ehyb gives for the impurity internal

energy

Eimp = Eocc + EC + 1
2
Ehyb + E

(2)
int , (24)

where, as before, all contributions except the last one are

evaluated as local static correlation functions. For reasons

discussed in Sec. III, the temperature dependence of the last

term is negligible in many cases and the impurity specific heat

can be calculated to high accuracy via

Cimp =
∂Eocc

∂T
+

∂EC

∂T
+

1

2

∂Ehyb

∂T

=
∂Eionic

∂T
+

1

2

∂Ehyb

∂T
, (25)

where Eionic = 〈Himp〉.

B. Dissipative two-state systems and the anisotropic

Kondo model

The method of Sec. III can be applied to bosonic models

such as the dissipative two-state system,4,5 and for Ohmic

dissipation, one can further relate the results to the AKM

and related models (e.g., a two-level system in a metallic

environment59). Dissipative two-state systems are of interest

in many contexts, including the description of qubits coupled

to their environment.

The Hamiltonian of the dissipative two-state system is given

by H = HS + HB + HI. The first term HS = − 1
2

0σx +

1
2
ǫσz describes a two-level system with bias splitting ǫ

and tunneling amplitude 
0, and σi=x,y,z are Pauli spin

matrices. HB =
∑

i ωi(a
†
i ai + 1/2) is the environment and

consists of an infinite set of harmonic oscillators (i =
1,2, . . . ,∞) with ai (a

†
i ) the annihilation (creation) operators

for a harmonic oscillator of frequency ωi and 0 � ωi � ωc,

where ωc is an upper cut-off frequency. The noninteract-

ing density of states of the environment is denoted by

g(ωi) =
∑

i δ(ω − ωi) and is finite in the interval [0,ωc] and

zero otherwise. Finally, HI = 1
2
σz

∑

i λi(ai + a
†
i ) describes

the coupling of the two-state system coordinate σz to the

oscillators, with λi denoting the coupling strength to os-

cillator i. The function Ŵ(ω + iδ) =
∑

i(λi/2)2/(ω − ωi +
iδ) =

∫

dω′(λ(ω′)/2)2 g(ω′)/(ω − ω′ + iδ) characterizes the

system-environment interaction. The Ohmic two-state system,

specified by a spectral function J (ω) = − 1
π

ImŴ(ω + iδ) ∼
αω for ω → 0, where α is the dimensionless dissipation

strength, is equivalent to the AKM H =
∑

kσ ǫkc
†
kσ ckσ +

J⊥
2

(S+s−
0 + S−s+

0 ) + J‖Szs
z
0 + BSz, where J⊥ (J‖) is the

transverse (longitudinal) part of the Kondo exchange inter-

action and B is a local magnetic field. The correspondence

is given by ρJ⊥ = −
0/ωc and α = (1 + 2δ/π )2, where

δ = arctan(−πρJ‖/4) and ρ is the density of states of the

conduction electrons in the AKM.4,5,60–62 The low-energy

scale of the Ohmic two-state system is the renormalized

tunneling amplitude 
r given by 
r/ωc = (
0/ωc)1/(1−α)

and corresponds to the low-energy Kondo scale TK of the

AKM. Special care is needed to obtain results for the Ohmic

two-state system from the AKM in the vicinity of the singular

point α → 1− since this corresponds to J‖ → 0 but with the

condition 0 < J⊥ < J‖, that is, in terms of parameters of the

Ohmic two-state system one requires 
0/ωc ≪ 1 − α ≪ 1

in order to investigate the vicinity of α = 1 within the

AKM.5

The specific heat Cimp = ∂Eimp/∂T of the Ohmic two-state

system is defined via an impurity internal energy Eimp =
Etotal − E0, where Etotal = 〈H 〉 = 〈HS〉 + 〈HB〉 + 〈HI〉 and

E0 = 〈HB〉0 =
∑

i ωi〈a†
i ai〉0 + Ezp =

∫ ωc

0
dω ω n(ω) g(ω) +

Ezp, where n(ω) = 1/(eβω − 1) is the Bose distribution

function and the zero point energy Ezp can be dropped, as it

cancels in the difference 〈HB〉 − E0 = EB − E0 appearing

in Eimp. Evaluating EB − E0 and EI = 〈HI〉 following the

approach in Sec. III we find

EB − E0 =
1

π

∫

dωn(ω)Im

{

χzz(ω + iδ)
∂

∂ω
[ωŴ(ω + iδ)]

}

= E
(1)
B + E

(2)
B , (26)

E
(1)
B =

1

π

∫

dωn(ω)Im [χzz(ω + iδ)Ŵ(ω + iδ)] , (27)

E
(2)
B =

1

π

∫

dωn(ω)Im

[

χzz(ω + iδ)ω
∂Ŵ(ω + iδ)

∂ω

]

,

(28)
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and

EI = −
1

π

∫

dωn(ω)Im [χzz(ω + iδ)Ŵ(ω + iδ)] , (29)

where χzz(ω + iδ) = 〈〈σz; σz〉〉ω+iδ is the longitudinal retarded

dynamic susceptibility and Ŵ(ω + iδ), characterizing the

system-environment interaction, was defined above. Noting

that E
(1)
B exactly cancels EI in the impurity internal energy, we

find

Eimp = − 1
2

0〈σx〉 + 1

2
ǫ〈σz〉 + E

(2)
B , (30)

that is, Eimp = ES + E
(2)
B . The term E

(2)
B gives a non-negligible

contribution to the impurity internal energy. For example, in

the Ohmic case with spectral function J (ω) = − 1
π

ImŴ(ω +
iδ) ∼ αω we have ω∂J (ω)/∂ω ∼ αω at low frequencies, so

E
(2)
B provides a contribution proportional to α. By carrying out

specific heat calculations on the AKM, we find numerically

that the impurity specific heat is consistent with setting E
(2)
B =

1
2
α
0〈σx〉 + A, with A being a weakly temperature-dependent

term, and negligible for calculating the specific heat, except

in the limit α → 1−. The latter limit is difficult to treat

numerically because of the vanishing low-energy scale 
r

for α → 1− (e.g., for 
0/ωc = 0.01 and α = 0.9 we have


r/ωc = 10−20). Hence, except in this extreme limit, and as

we show below by comparing with exact results, the impurity

specific heat can be obtained accurately from Cimp = ∂Eimp

∂T
by

using

Eimp ≈ − 1
2

0(1 − α)〈σx〉 + 1

2
ǫ〈σz〉. (31)

Figure 12 shows results obtained in this way for

Cimp(T )/(kBT/
r) compared to Bethe ansatz calculations

for the AKM63 for a range of dissipation strengths. These
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FIG. 12. (Color online) Specific heat Cimp(T )/kBT/
r of the

Ohmic two-state system as a function of reduced tempera-

ture kBT/
r for a range of dissipation strengths α = 1/5, 1/4,

1/3, 1/2, 2/3, 3/4, 4/5. Symbols: NRG results in new approach.

Lines: Bethe ansatz results. The renormalized tunneling amplitude


r from the Bethe ansatz is used. The vertical arrow indicates the

approximate crossing point at kBT/
r ≈ 0.67. Model parameters:


0/ωc = 0.005. NRG parameters: � = 10,nz = 4 retaining 860

states per NRG iteration.
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FIG. 13. (Color online) Specific heat Cimp(T )/(αkBT/
r) of the

Ohmic two-state system as a function of reduced temperature kBT/
r

for a range of dissipation strengths α < 1/2. Symbols: NRG results

in new approach. Lines: Bethe ansatz results. In the low-temperature

Fermi liquid regime T ≪ 
r we have Cimp(T )/(αkBT/
r) = γ̃ +
β̃(T/
r)

2, with γ̃ = π/3 and the T 3 coefficient in C(T ) changes

sign for α < 1/3 (see Ref. 62). Model parameters: 
0/ωc = 0.005.

NRG parameters: � = 10,nz = 4 retaining 860 states per NRG

iteration.

results recover the known results for asymptotically high

and low temperatures.64 In common with specific heats of

other correlated electron systems as a function of interaction

strength,65 we observe a crossing point in C(T )/T (here,

at kBT/
r ≈ 0.67). On decreasing the dissipation strength

from strong (α > 1/2) to weak values (α < 1/2) the T 3

coefficient of the specific heat changes sign for α < 1/3

resulting in the appearance of a finite temperature peak in

C(T )/T . This is shown in more detail in Fig. 13. It signifies

the development of a gap ∼
0 in the spectrum as α → 0.

For α = 0 one eventually recovers the Schottky specific

heat for a noninteracting two-level system. The expression

(31) for the Ohmic two system is also the impurity internal

energy of the equivalent AKM (indeed, the NRG results

that we showed were for this model). The correspondence

of model parameters was given above and the operators σx

and σz are identified, under bosonization,4,5,60,62 with the

spin-flip operator S+s−
0 + S−s+

0 and the local Sz in the AKM,

respectively. The zero temperature expectation values 〈σx〉 and

〈σz〉 (and the associated entanglement entropy of the qubit)

have been studied previously as a function of dissipation

strength and finite bias.66,67

We expect that the term E
(2)
B is non-negligible also for

generic spectral functions J (ω) ∼ ωs and certainly for the sub-

Ohmic case s < 1. Recent results for the local spin dynamics

of the sub-Ohmic spin boson model68 could shed light on

this.

The result (31) shows that a significant contribution to

the impurity internal energy and specific heat arises from the

(interacting) bath contribution E
(2)
B , which remains finite for

arbitrarily small α. Thus, while a definition of the internal

energy of the system via ES = 〈HS〉 and the specific heat via

CS = ∂ES/∂T , might seem reasonable for a small quantum
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system weakly coupled to an infinite bath, such a definition

yields, in general, a specific heat CS which differs from

Cimp.69–72 One system for which the two definitions agree is

the harmonic oscillator coupled Ohmically to an infinite bath

of harmonic oscillators.69 This result, however, represents a

special case, and, moreover, is sensitive to details of the cut-off

scheme used for the spectral function J (ω) (see Refs. 69

and 72). The use of Eimp and Cimp as definitions for the

system internal energy and specific heat in the context of

open quantum systems5,73 also provides an unambiguous

prescription for their measurement in terms of two separate

measurements,71,74 one for H and one for H0. We note also

that the impurity specific heat Cimp(T ) = C(T ) − C0(T ) need

not be positive at all temperatures and only the positivity

of C(T ) and C0(T ) in Eqs. (1) and (2) is guaranteed by

thermodynamic stability of the equilibrium systems described

by H and H0 (see Ref. 75). Examples of systems where

the difference Cimp(T ) may be negative in some temperature

range, include quantum impurities exhibiting a flow between a

stable and an unstable fixed point,76 and magnetic impurities in

superconductors.77

VII. DISCUSSION AND CONCLUSIONS

In this paper we introduced a new approach to the

calculation of impurity internal energies and specific heats of

quantum impurity models within the NRG method. For general

Anderson impurity models, the impurity contribution to the

internal energy was expressed in terms of local quantities and

the main contribution to the impurity specific heat was shown

to arise from local static correlation functions. For this class of

models, the impurity specific heat can be obtained essentially

exactly as Cimp(T ) = ∂Eionic

∂T
+ 1

2

∂Ehyb

∂T
, where Eionic = 〈Himp〉

and Ehyb is the hybridization energy. A comparison with exact

Bethe ansatz calculations showed that the results for specific

heats of the Anderson impurity model are recovered accurately

over the whole temperature and magnetic field range. The

new method has several advantages over the conventional

approach to specific heats within the NRG, namely, (i) only

diagonalization of the total system is required, (ii) only local

quantities are required, and (iii) discretization oscillations at

large � are significantly smaller than in the conventional

approach.

For the dissipative two-state system we obtain the specific

heat as Cimp(T ) ≡ ∂Eimp

∂T
= ∂ES

∂T
+ ∂E

(2)
B

∂T
, where ES = 〈HS〉 is

analogous to Eionic in the Anderson model, and E
(2)
B is a

contribution to the energy of the system arising from the

interaction with the bath. It depends on the local dynamical

susceptibility and the type of coupling to the environment.

For the Ohmic case we used the equivalence of the Ohmic

two-state system to the AKM to show numerically that E
(2)
B =

1
2
α
0〈σx〉 + A, with A having a negligible temperature depen-

dence, except in the extreme limit α → 1−. Comparison with

exact Bethe ansatz calculations on the AKM confirmed the

above.

The approach described in this paper applies to energy-

dependent hybridizations also, see Fig. 7, so inclusion of the

term E
(2)
int in Eq. (14) could prove useful in applications to

quantum impurities with a pseudogap density of states.37,78

It may also be applied within other methods for solving

quantum impurity models, for example, within continuous

time79 or Hirsch-Fey80 quantum Monte Carlo techniques or

exact diagonalization methods (for a recent review see Ref. 81

and references therein). Local static correlation functions,

such as the double occupancy, required for Eimp, are readily

extracted within these approaches.82

Within a DMFT treatment of correlated lattice models,19–22

the hybridization function 
 acquires an important tempera-

ture and frequency dependence 
(ω) → 
(ω,T ). The latter

enters explicitly in the term E
(2)
int , whose inclusion could

offer an approach to the calculation of specific heats of

correlated lattice models. The thermodynamic potential of the

latter83 is a sum of two parts, one depending on the local

self-energy, which is the central quantity calculated in DMFT,

and another equal to the thermodynamic potential �imp =
Eimp − T Simp of the effective impurity model. The latter

can be obtained from Eimp(T ), via Cimp(T ) and Simp(T ) =
∫ T

0
dT ′ Cimp(T ′)

T ′ . The impurity internal energy, expressed in

terms of local dynamical quantities as in Ref. 45, has recently

been used in a DMFT solution of the Hubbard model

within a variational generalization84 of the local moment

approach.85

In the future it may be interesting, especially in the context

of qubits or nanodevices, to consider the time dependence

of the impurity internal energy subject to an initial state

preparation, for example, within techniques such as time-

dependent density matrix renormalization group86–88 or time-

dependent NRG.33,89,90
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APPENDIX A: BAND CONTRIBUTION TO IMPURITY

INTERNAL ENERGY

The expression (11) for the conduction band contribution to

the impurity internal energy requires evaluation of the integral

I (ω) =
∫

dǫ
ǫV 2N (ǫ)

(ω − ǫ + iδ)2
. (A1)

We assume a density of states N (ω) vanishing at the

band edges at ω = ±D. The hybridization function 
(ω) =
∑

k V 2/(ω − ǫk + iδ) = 
R(ω) + i
I (ω), where 
I (ω) =
−πN (ω)V 2. With these definitions, we have

I (ω) = −
1

π

∫ +D

−D

dǫǫ
I (ǫ)
∂

∂ǫ

1

(ω − ǫ + iδ)

= −
1

π

ǫ
I (ǫ)

ω − ǫ + iδ
|+D
−D

+
1

π

∫ +D

−D

dǫ
1

ω − ǫ + iδ

∂

∂ǫ
[ǫ
I (ǫ)]. (A2)
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The first term vanishes since 
I (±D) = 0 for regular (e.g.,

3D) densities of states (and will otherwise result in contri-

butions with negligible temperature dependence). The second

term can be evaluated by noting that 
(ω + iδ) satisfies the

causal properties of retarded Green functions and by using

the following properties of principle value (P.V.) integrals: If

P.V.[f (x)] = g(y) then P.V.[f ′(x)] = g′(y) and P.V.[xf (x)] =
yg(y) + 1

π

∫

dxf (x). The final result is

I (ω) = −
∂

∂ω
[ω
(ω)]. (A3)

APPENDIX B: NUMERICAL SOLUTION OF THE

THERMODYNAMIC BETHE ANSATZ EQUATIONS

In this Appendix we summarize the thermodynamic Bethe

ansatz (TBA) equations for the Anderson model, which were

derived by Okiji and Kawakami42,91,92 and Tsvelick, Filyov,

and Wiegmann,40,41,93,94 and provide details of their numerical

solution.46–49,62,95 The numerical procedure described applies

to both the symmetric and asymmetric Anderson models and

in the presence of a finite magnetic field and was used to obtain

the results presented in this paper.

1. Thermodynamic Bethe ansatz equations

The thermodynamic Bethe ansatz (TBA) produces an

infinite set of coupled integral equations for the functions ǫ(k),

κ ′
n(�), and κn(�), n = 1,2, . . . , describing the charge and spin

excitations of the system (Tsvelick and Wiegmann40):

ǫ(k) − T

∫ ∞

−∞
s[g(k) − �] ln[f (κ1(�)]d�

= ǫ0(k) − T

∫ ∞

−∞
s[g(k) − �] ln[f (κ ′

1(�)]d�, (B1a)

κn(�) + T (s ∗ {ln[f (κn+1)] + ln[f (κn−1)]})(�)

= δn,1T

∫ ∞

−∞
s[g(k) − �] ln{f [−ǫ(k)]}g′(k) dk, (B1b)

κ ′
n(�) + T (s ∗ {ln[f (κ ′

n+1)] + ln[f (κ ′
n−1)]})(�)

= δn,1T

∫ ∞

−∞
s[g(k) − �] ln{f [ǫ(k)]}g′(k) dk, (B1c)

where

g(k) =
(

k − εd − 1
2
U

)2

2ŴU
, s(�) =

1

2 cosh(π�)
,

f (k) =
1

1 + ek/T
, R(x) =

1

π

∫ ∞

0

cos(ωx)

1 + eω
dω,

ǫ0(k) = k − εd −
1

2
U +

∫ ∞

−∞
R[g(k) − g(p)]p · g′(p)dp,

g′(k) denotes the first derivative of g(k) with respect to k. ∗
is the convolution of two functions. κ0 and κ ′

0 equal −∞. For

n → ∞ the functions approach the constant values,

lim
n→∞

κn = n · H, lim
n→∞

κ ′
n = n · (2εd + U ), (B2)

where H is a uniform magnetic field and 2εd + U measures

the deviation from the symmetric point at εd = −U/2. The

impurity contribution to the specific heat Cimp may be calcu-

lated from the the impurity contribution to the thermodynamic

potential �imp via Cimp = −T ∂2�imp/∂T 2, where

�imp = T

∫ ∞

−∞
ρ0(k) ln{f [−ǫ(k)]} dk

+ T

∫ ∞

−∞
σ0(�) ln[κ ′

1(�)]d� + E0. (B3)

The functions ρ0 and σ0 are given by

σ0(�) =
∫ ∞

−∞
s[� − g(k)]
(k)dk,

ρ0(k) = 
(k) + g′(k)

∫ ∞

−∞
R[g(k) − g(p)]
(p)dp,

where 
(k) = Ŵ
π[Ŵ2+(k−εd )2]

. E0 is the ground-state energy of

the symmetric Anderson model.91 Note two changes with

respect to the earlier Ref. 40: A sign change in Eq. (B1c) (as

in Wiegmann and Tsvelick41) and a factor 2 in the boundary

value for κ ′
n in Eq. (B2) (as in Okiji and Kawakami42).

For the calculations we use a transformation of κn and κ ′
n

to new functions ξn and ξ ′
n similar to that used in previous

works.46,47,62 After substituting ξn = ln(1 + eκn/T ) and ξ ′
n =

ln(1 + eκ ′
n/T ) we obtain the following coupled equations:

ξ1(�) = ln(1 + exp{[s ∗ (ξ2 + I1)](�)}), (B4a)

ξn(�) = ln(1 + exp{[s ∗ (ξn−1 + ξn+1)](�)}), (B4b)

ξ ′
1(�) = ln(1 + exp{[s ∗ (ξ ′

2 + I ′
1)](�)}), (B4c)

ξ ′
n(�) = ln(1 + exp{[s ∗ (ξ ′

n−1 + ξ ′
n+1)](�)}), (B4d)

I1(�) =
∫ ∞

−∞
s[g(k) − �] ln{f [−ǫ(k)]}g′(k) dk, (B4e)

I ′
1(�) =

∫ ∞

−∞
s[g(k) − �] ln{f [ǫ(k)]}g′(k) dk, (B4f)

I (k) =
∫ ∞

−∞
s[g(k) − �][ξ1(�) − ξ ′

1(�)]d�, (B4g)

e(k) = e0(k) + T · I (k). (B4h)

2. Truncation

For calculational purposes the equations ξn and ξ ′
n′ have

to be truncated at some finite value n = N and n′ = N ′. One

has to calculate the functions at the truncation with care, to

avoid wrong results at the boundaries � → ±∞. We use the

truncation scheme of Takahashi and Shiroishi.95 It is assumed

that the function s(x) can be approximated by δ(x)/2 for large

n or n′. This is justified as the functions become smoother in

this region (see Fig. 14). Rewritten for the Anderson model

and for ξN and ξ ′
N the corresponding truncation functions are
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FIG. 14. (Color online) The figure shows a set of ξn for the sym-

metric case (εd + U/2 = 0) zoomed to range of � = −20, . . . ,20.

The functions become smoother with higher n due to the convolution

with s(x).

calculated by

ξN = ln

{[

cosh

(

H

2

)

√

2 + eξN−1

+

√

1 + sinh2

(

H

2

)

(2 + eξN−1 )

]2}

, (B5a)

ξ ′
N ′ = ln

{[

cosh

(

2εd + U

2

)√

2 + eξ ′
N ′−1

+

√

1 + sinh2

(

2εd + U

2

)

(2 + eξ ′
N ′−1 )

]2}

. (B5b)

As a further check, and to ensure the correct behavior at

the boundaries, the TBA integral equations were explicitly

solved in the limits of �,k → ±∞. As the functions are

smooth in this limit one can assume that s(x) → δ(x)/2 and

limk→∞ ǫ0(k) = 2(k − εd − U/2), limk→−∞ ǫ0(k) = 0. This

leads to the following set of coupled algebraic equations:

lim
�→−∞

ξ1 = ln
[

1 + exp
(

1
2
ξ2

)]

, (B6a)

ξn = ln
{

1 + exp
[

1
2
(ξn−1 + ξn+1)

]}

, (B6b)

ξ ′
1 = ln

[

1 + exp
(

1
2
ξ ′

2

)]

, (B6c)

ξ ′
n = ln

{

1 + exp
[

1
2
(ξ ′

n−1 + ξ ′
n+1)

]}

, (B6d)

lim
�→∞

ξ1 = ln
[

1 + exp
(

1
2

{

ξ2 − ln
[

1 + exp
(

1
2
ξ1

)]})]

, (B6e)

ξn = ln
{

1 + exp
[

1
2
(ξn−1 + ξn+1)

]}

, (B6f)

ξ ′
1 = 0, (B6g)

ξ ′
n = ln

{

1 + exp
[

1
2
(ξ ′

n−1 + ξ ′
n+1)

]}

. (B6h)

The truncation constants ξN and ξ ′
N ′ are calculated as in

Eq. (B5). The boundary values were calculated by iteration

using a modification of the Powell hybrid method.

3. Numerical details

For the calculations, a logarithmic grid was used that is

centered around εd + U/2. The TBA equations were solved

by iteration. The initial values of ξn and ξ ′
n′ were chosen to

fit a tanh function with boundary values given by the correct

boundary values of ξn and ξ ′
n, obtained as described above. The

integrations were carried out using adaptive routines with the

integrands being represented by splines of smooth functions

only (see below). A smoother convergence of the iteration

procedure is obtained by using 10% of the old iteration values

in each step. To represent only smooth functions as splines, ξ1

and ξ ′
1 are not interpolated, but instead the s ∗ ξ2 and s ∗ ξ ′

2,

respectively. The values of ξ1 and ξ ′
1 are then calculated from

these convolutions and from I1 and I ′
1 using Eqs. (B4a) and

(B4c). This avoids numerical problems due to the exponential

drop to zero of ξ ′
1 beyond a certain rapidity �0. See Fig. 15 for a

comparison between the behavior of ξ ′
1 and I ′

1. N = N ′ = 20

functions were used and iterated 500 times for the figures

in this Appendix (and 2000 times for results in the paper).

The growth rate of the grid was 1.05 and it consisted of 801

points. The mid 400 values lie in a range of [−40,40]. After a

certain temperature-dependent cutoff (±40 ± 40 · T/T0) the

boundary values were used instead of being calculated to

ensure numerical stability. The thermodynamic potential was

calculated in a range of T0 × 10−3 to T0 × 106 on a logarithmic

mesh (factor 21/8 as step width) where T0 is defined as

T0 =
√

UŴ/2 exp(−πU
8Ŵ

+ πŴ
2U

), Kondo temperature for the

symmetric case. It is related to the magnetic susceptibility at

zero temperature χimp(T = 0) = (gµB)2

4kBT0
(see Hewson in Ref. 1

p. 165, and Kawakami and Okiji in Ref. 96).
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FIG. 15. (Color online) Comparison between I ′
1 and ξ ′

1 for 500

iterations and T = 10−4TK . Parameters were chosen to be the same

as in Fig. 1. For very low temperatures ξ ′
1 (circles, left y axis) exhibits

an exponential drop beyond a certain rapidity �0 (≈−4 for the case

shown), which is difficult to capture with a fixed grid. This problem

can be overcome by using the smooth function I ′
1 (squares, right y

axis) to calculate ξ ′
1 via Eq. (B4c).
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