000022537 001__ 22537
000022537 005__ 20240610121103.0
000022537 0247_ $$2DOI$$a10.1088/1367-2630/14/8/085026
000022537 0247_ $$2WOS$$aWOS:000308362800001
000022537 0247_ $$2Handle$$a2128/7557
000022537 0247_ $$2altmetric$$aaltmetric:921759
000022537 037__ $$aPreJuSER-22537
000022537 041__ $$aeng
000022537 082__ $$a530
000022537 084__ $$2WoS$$aPhysics, Multidisciplinary
000022537 1001_ $$0P:(DE-Juel1)VDB96421$$aMcWhirter, J.L.$$b0$$uFZJ
000022537 245__ $$aOrdering and arrangement of deformed red blood cells in flow through microcapillaries
000022537 260__ $$a[Bad Honnef]$$bDt. Physikalische Ges.$$c2012
000022537 300__ $$a085026
000022537 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000022537 3367_ $$2DataCite$$aOutput Types/Journal article
000022537 3367_ $$00$$2EndNote$$aJournal Article
000022537 3367_ $$2BibTeX$$aARTICLE
000022537 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000022537 3367_ $$2DRIVER$$aarticle
000022537 440_0 $$08201$$aNew Journal of Physics$$v14$$x1367-2630$$y085026
000022537 500__ $$aWe thank I O Gotze, T Auth and M Peltomaki for helpful discussions. Support of this work by the DFG through the priority program 'Nano- and Microfluidics' is gratefully acknowledged.
000022537 520__ $$aThe shapes and alignment of elastic vesicles similar to red blood cells (RBCs) in cylindrical capillary flow are investigated by mesoscopic hydrodynamic simulations. We study the collective flow behavior of many RBCs, where the capillary diameter is comparable to the diameter of the RBCs. Two essential control parameters are the RBC volume fraction (the tube hematocrit, H-T), and the suspension flow velocity. Depending on H-T, flow velocity and capillary radius, the RBC suspension exhibits a disordered phase and two distinct ordered phases, consisting of a single file of parachute-shaped cells and a zigzag arrangement of slipper-shaped cells, respectively. We argue that thermal fluctuations, included in the simulation method, coupled to hydrodynamic flows are important contributors to the RBC morphology. We examine the changes to the phase structures when the capillary diameter and the material properties (bending rigidity kappa and stretching modulus mu) of the model RBCs are varied, constructing phase diagrams for each case. We focus on capillary diameters, which range from about 1.0 to about 1.4 times the RBC long diameter. For the smallest capillary diameter, the single-file arrangement dominates; for the largest diameter, the ordered zigzag arrangement begins to loose its stability and alternates with an asymmetric structure with two lanes of differently oriented cells. In simulations with long capillaries, the coexistence of different phases can be observed.
000022537 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000022537 588__ $$aDataset connected to Web of Science
000022537 650_7 $$2WoSType$$aJ
000022537 7001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b1$$uFZJ
000022537 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000022537 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/14/8/085026$$gVol. 14$$p085026$$q14$$tNew journal of physics$$v14$$x1367-2630$$y2012
000022537 8567_ $$uhttp://dx.doi.org/10.1088/1367-2630/14/8/085026
000022537 8564_ $$uhttps://juser.fz-juelich.de/record/22537/files/FZJ-22537.pdf$$yOpenAccess$$zPublished final document.
000022537 8564_ $$uhttps://juser.fz-juelich.de/record/22537/files/FZJ-22537.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000022537 8564_ $$uhttps://juser.fz-juelich.de/record/22537/files/FZJ-22537.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000022537 8564_ $$uhttps://juser.fz-juelich.de/record/22537/files/FZJ-22537.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000022537 909CO $$ooai:juser.fz-juelich.de:22537$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000022537 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000022537 9132_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000022537 9141_ $$y2012
000022537 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000022537 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000022537 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000022537 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000022537 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000022537 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000022537 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000022537 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000022537 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000022537 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000022537 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000022537 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000022537 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000022537 9201_ $$0I:(DE-Juel1)IAS-2-20090406$$gIAS$$kIAS-2$$lTheorie der Weichen Materie und Biophysik$$x1$$zIFF-2
000022537 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000022537 970__ $$aVDB:(DE-Juel1)139156
000022537 9801_ $$aFullTexts
000022537 980__ $$aVDB
000022537 980__ $$aConvertedRecord
000022537 980__ $$ajournal
000022537 980__ $$aI:(DE-Juel1)IAS-2-20090406
000022537 980__ $$aI:(DE-Juel1)ICS-2-20110106
000022537 980__ $$aUNRESTRICTED
000022537 980__ $$aJUWEL
000022537 980__ $$aFullTexts
000022537 981__ $$aI:(DE-Juel1)IBI-5-20200312
000022537 981__ $$aI:(DE-Juel1)IAS-2-20090406
000022537 981__ $$aI:(DE-Juel1)ICS-2-20110106