001     22562
005     20240708132829.0
024 7 _ |2 DOI
|a 10.1007/s11666-012-9736-3
024 7 _ |2 WOS
|a WOS:000303472600014
037 _ _ |a PreJuSER-22562
041 _ _ |a eng
082 _ _ |a 670
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
100 1 _ |0 P:(DE-HGF)0
|a Röttger, A.
|b 0
245 _ _ |a HVOF spraying of Fe-based MMC coatings with in-situ formation of hard particles by hot isostatic pressing
260 _ _ |a Boston, Mass.
|b Springer
|c 2012
300 _ _ |a 344 - 354
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 12482
|a Journal of Thermal Spray Technology
|v 21
|x 1059-9630
|y 2
500 _ _ |a Financial support of this project from the German Research Foundation (DFG Project No. TH531/6-1; VA163/4-1) is gratefully acknowledged.
520 _ _ |a Thick (2-3 mm) Fe-base coatings with admixed ferrotitanium (Fe30Ti70) were applied to austenitic steel by a high-velocity oxy-fuel process (HVOF). Hot-isostatic pressing (HIP) was carried out to the decrease porosity and to increase the material strength, wear resistance, and adhesive bond strength of the deposited coating to the substrate material. SEM and XRD investigations confirmed the formation of hard titanium carbide (TiC) particles during HIP treatment as a result of strong carbon diffusion out of the metal matrix and into the Fe30Ti70 particles. The mechanical and wear properties of the densified coatings were investigated by means of shear tests, hardness measurements, and abrasive wear tests. A comparison of the coatings in the as-sprayed and the HIPed state showed a large increase in the wear resistance due to in situ TiC formation.
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Fe-base
653 2 0 |2 Author
|a HIP
653 2 0 |2 Author
|a HVOF
653 2 0 |2 Author
|a in situ TiC
653 2 0 |2 Author
|a MMC
700 1 _ |0 P:(DE-HGF)0
|a Weber, S.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Theisen, W.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB90947
|a Rajasekaran, B.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)129670
|a Vaßen, R.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2047715-6
|a 10.1007/s11666-012-9736-3
|g Vol. 21, p. 344 - 354
|p 344 - 354
|q 21<344 - 354
|t Journal of thermal spray technology
|v 21
|x 1059-9630
|y 2012
856 7 _ |u http://dx.doi.org/10.1007/s11666-012-9736-3
909 C O |o oai:juser.fz-juelich.de:22562
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|1 G:(DE-HGF)POF2-120
|2 G:(DE-HGF)POF2-100
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-113
|1 G:(DE-HGF)POF3-110
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Energieeffizienz, Materialien und Ressourcen
|v Methods and Concepts for Material Development
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|g IEK
|k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|x 0
970 _ _ |a VDB:(DE-Juel1)139197
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21