001     22571
005     20240619091952.0
024 7 _ |2 DOI
|a 10.1021/ma301510j
024 7 _ |2 WOS
|a WOS:000307988500018
024 7 _ |2 MLZ
|a doi:10.1021/ma301510j
037 _ _ |a PreJuSER-22571
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Polymer Science
100 1 _ |0 P:(DE-HGF)0
|a Uchman, M.
|b 0
245 _ _ |a Coassembly of Poly(ethylene oxide)-block-poly(methacrylic acis) and N-Dodecylpyridinium Chloride in Aqueous Solutions Leading to Ordered Micellar Assemblies within Copolymer Aggregates
260 _ _ |a Washington, DC
|b Soc.
|c 2012
300 _ _ |a 6471 - 6480
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 4142
|a Macromolecules
|v 45
|x 0024-9297
|y 16
500 _ _ |a The authors acknowledge the financial support from the Ministry of Education of the Czech Republic (long-term Research Project No. MSM0021620857) and the Grant Agency of the Czech Republic (Grants P208/10/0353, P208/12/P236, P205/11/J043, and P106/12/0143) and German Academic Exchange Service DAAD (Grants 2B08021 and D0804221 PPP-CZ-09-10, PKZ: 50016729). This research project has been supported by the European Commission under the 7th Framework Programme through the Key Action: Strengthening the European Research Area, Research Infrastructures. Contract: 226507 (NMI3). For allocation of beam time we are grateful to ILL (Grenoble, France), ESFR (Grenoble, France), and Diamond (Didcot, UK). BA. acknowledges user support from the Diamond Light Source (Didcot, Oxfordshire, UK; Proposal SM3313, Beamline I22) and ESRF (Grenoble, France, Proposal SC3113, Beamline ID02) and thanks Drs. S. Filippov, P. Stepanek, N. Terrill, J. Gummel, and T. Narayanan for cooperation and support.
520 _ _ |a Formation of polyelectrolyte-surfactant (PE-S) complexes of poly(ethylene oxide)-block-poly(methacrylic acid) (PEO705-PMAA(476)) and N-dodecylpyridinium chloride (DPCl) in aqueous solution was studied by static and dynamic light scattering (SLS, DLS), small-angle neutron scattering (SANS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). While it was found previously [Macromolecules 1997, 30, 3519] by microcalorimetric titration that in a similar system (PEO176-PMAA(186)) crystallization of aliphatic tails of N-dodecylpyridinium bromide did not occur, in our system it was evidenced by SAXS that upon addition of DPCl to fully ionized PEO705-PMAA(476) the ordered arrangement of the surfactant occurs in a certain range of PEO705-PMAA(476) concentrations and surfactant-to-polyelectrolyte charge molar ratio (Z). Our data suggest a four-step process in the behavior of the PEO705-PMAA(476)/DPCl system: (I) coexistence of loose aggregates of electrostatically bound surfactants to PMAA block with free and almost unperturbed copolymer coils at Z << 1, (ii) formation of aggregates containing ill-defined cores formed by DPCl micelles attached to coiled PMAA chains (beads-on-a-string nanoparticles) in the range around Z = 0.5, (iii) formation of compact core-shell nanoparticles with a core formed by densely packed ordered (crystalline) DPCl micelles and PEO shell starting slightly before charge equimolarity (Z = 1), and (iv) the region of coexistence of the core shell nanoparticles with free DPCl micelles in excess above equimolarity (Z >> 1). In the region around Z = 0.5, the nanoparticles with nonordered cores coexist in a mixture either with a fraction free chains and large swollen nanoparticles decorated by surfactant micelles (at lower Z) or with the core shell nanoparticles (at higher Z). PE-S complexes were characterized in detail in terms of molar mass, size, shape, and internal structure.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|x 0
|c FUEK505
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung (FUEK505)
536 _ _ |a 544 - In-house Research with PNI (POF2-544)
|0 G:(DE-HGF)POF2-544
|c POF2-544
|x 1
|f POF II
536 _ _ |a NMI3 - Integrated Infrastructure Initiative for Neutron Scattering and Muon Spectroscopy (226507)
|0 G:(EU-Grant)226507
|c 226507
|x 2
|f FP7-INFRASTRUCTURES-2008-1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
650 2 7 |a Soft Condensed Matter
|0 V:(DE-MLZ)SciArea-210
|2 V:(DE-HGF)
|x 0
650 1 7 |a Polymers, Soft Nano Particles and Proteins
|0 V:(DE-MLZ)GC-1602-2016
|2 V:(DE-HGF)
|x 1
650 1 7 |a Key Technologies
|0 V:(DE-MLZ)GC-150-1
|2 V:(DE-HGF)
|x 0
693 _ _ |0 EXP:(DE-MLZ)KWS2-20140101
|1 EXP:(DE-MLZ)FRMII-20140101
|5 EXP:(DE-MLZ)KWS2-20140101
|6 EXP:(DE-MLZ)NL3ao-20140101
|a Forschungs-Neutronenquelle Heinz Maier-Leibnitz
|e KWS-2: Small angle scattering diffractometer
|f NL3ao
|x 0
700 1 _ |0 P:(DE-HGF)0
|a Stepanek, M.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Prevost, S.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Angelov, B.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Bednar, J.
|b 4
700 1 _ |0 P:(DE-Juel1)VDB95094
|a Appavou, M.-S.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Gradzielski, M.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Prochazka, K.
|b 7
773 _ _ |0 PERI:(DE-600)1491942-4
|a 10.1021/ma301510j
|g Vol. 45, p. 6471 - 6480
|p 6471 - 6480
|q 45<6471 - 6480
|t Macromolecules
|v 45
|x 0024-9297
|y 2012
856 7 _ |u http://dx.doi.org/10.1021/ma301510j
909 C O |o oai:juser.fz-juelich.de:22571
|p openaire
|p VDB:MLZ
|p VDB
|p ec_fundedresources
913 2 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
913 2 _ |0 G:(DE-HGF)POF3-623
|1 G:(DE-HGF)POF3-620
|2 G:(DE-HGF)POF3-600
|a DE-HGF
|b Forschungsbereich Materie
|l In-house research on the structure, dynamics and function of matter
|v Neutrons for Research on Condensed Matter
|x 1
913 1 _ |x 0
|v In-house Research with PNI
|1 G:(DE-HGF)POF2-540
|0 G:(DE-HGF)POF2-544
|2 G:(DE-HGF)POF2-500
|a DE-HGF
|b Struktur der Materie
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Forschung mit Photonen, Neutronen, Ionen
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|g ICS
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-FRM-II-20110218
|k JCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II
|l JCNS-FRM-II
|x 1
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|g JCNS
|k JCNS-1
|l Neutronenstreuung
|x 2
970 _ _ |a VDB:(DE-Juel1)139232
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)JCNS-FRM-II-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21