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1 Introduction

The term ‘quasielastic scattering’ designates a limitiagecof inelastic scattering that is close
to elastic scattering. There are different ways to spechigtwclose’ means. In a wider sense,
it is only required that the energy transfer be small congh&mehe incident energy of the scat-
tered particles. This is how the word ‘quasielastic’ orgipwas coined in nuclear physics. Ina
narrower sense,@uasielastic linas a spectral feature centered around the elastic peak.\A ver
special use or abuse of the term ‘quasielastic’ shall onlynkeationed in passingjuasielas-
tic light scattering also calleddynamic light scatteringor (much more to the poin)hoton
correlation spectroscopy

Quasielastic neutron scatterin@ENS) is used to study atomic and molecular modes of
motion that are slower than the phonons typically studied tiple-axis spectrometer. A lower
bound for the energy transfers is set by the resolution ollaMa spectrometers. In the fol-
lowing, we will only discuss energy-resolved measurementsme-of-flight or backscattering
spectrometers, refering to another lecture (D8) for the-ggho method, which is special in sev-
eral respects (implicit Fourier transform, preferencedainerent scattering, focus on smgll
Accordingly, we are concerned with energy transfers of tlieoof ueV to meV, correspond-
ing to time scales of ns to ps. Motion on this time-scale imgslmolecular reorientations and
certain slow oscillations as well as jump processes thauadad diffusion or relaxation.

Depending on the isotopic composition of the sample, newtoattering can be dominated
by coherent or incoherent contributions (lecture A4). Gehescattering conveys richer infor-
mation, but is more difficult to interpret. On time-of-fliglwtd backscattering spectrometers, by
far the majority of experiments is concerned with incohesgattering. In particular, whenever
a sample contains hydrogen, this element is likely to doteitiee total cross section, except if
the material is fully deuterated. In this lecture we will centrate on the most simple and most
important use of QENSncoherent scatterin@y hydrogen

2 Basics

2.1 Self correlation functions

Incoherent neutron scattering measusel correlationsof tagged particles Assuming that
there is just one noteworthy species of scatterers, theldalitferential cross section can be
written as 5 .
g Oinc Rt
5000 = T Snel Q). (1)
For the remainder of this lecture, the subscript ‘inc’ widl bmitted. Let us summarize a few
relations from lecture A5. Thecattering functionS(Q,w) is best expressed via a Fourier
transform in time,

SQuw) =5 [dte1Qu), @

2In photon-correlation spectroscopy, scattered photomsannted regardless of their energy; photon counts
are then correlated by some real-time electronics. Thisalmsst nothing in common with quasielastic neu-
tron scattering. The light scattering analogue of quasiiEglaeutron scattering is called high-resolution inétast
light scattering oRayleigh-Brillouin scatteringto analyse the energy of scattered photons either a Famgt-P
interferometer or a high-resolution grating spectromistesed.

30nly here,() stands for a solid angle. Later on, we will reuse the synibdb designate characteristic
frequencies of our model systems.
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with theintermediate scattering function
Z <e 1QfF; (0 erJ(t > (3)

Its initial value is/(Q,0) = 1. In the ballistic short-time regime (for times that are ghor
compared to a typical phonon period), it has the expansion

Z CRGENES I —Qth (4)
with a frequency},, that depends oy and on the mean squared thermal velocity:
1 o Q%1 2
= 5 2 @Qv;(0))") = 55 D (vil0)°) = QT ; Z— (5)
j

Since(), lies far outside the dynamic range of the spectrometersfos€ENS, the short-time
expansion has only theoretical importance.
An additional Fourier transform in space,

1(Q,t) = /dgr ' Gy(r, 1) (6)

relates the intermediate scattering function to the saifetation function
1 / / - / ~
= 3 [ (6 050 - 2,(0). ™)
j

Before taking the classical limit, it is advisable to cotrr detailed balance, introducing the
symmetrized scattering law

S(Q,w) = ™/*sT3(Q,w). (8)

In the classical limit, the position operators commute, el symmetrized self-correlation
functionG, is approximated by

G (r NZ (r = #5(t) + £5(0))) - ©)

2.2 Harmonic vibrations and the mean squared displacement

Before turning to the slow, anharmonic modes of motion thattgpically studied by QENS,
we briefly review scattering by harmonic vibrations (congphacture B4). This analytically
tractable reference case helps us to introduce importaceqas like elastic incoherent structure
factor and the mean squared displacement, which later débevgeneralized for non-harmonic
systems.

Vibrations are described in terms of displacementg) from equilibrium position®R ;,

r;(t) = Ry +u;(t). (10)
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Eq. (3) keeps its form under this transformation, exceptttier; are substituted by;. If the
particles;j are only subject to harmonic forces, then the Bloch theordral[ows the simplifi-
cation

1(Q,t) = % ; 0 2W;(Q.0) 2W;(Q1) (11)
with
2W5(Q, 1) := ((Qu;(0))(Quy(t)) ) - (12)
In isotropic systems, an orientational average gives
2
MW,(Q.1) = L {0y (1)) a3)

Each particle partakes in a huge number of oscillatory magbgh quickly run out of phase.
Therefore, within little more than one typical phonon pdri2lV;(Q, t) approaches 0. In con-
sequence, the intermediate scattering function conveogesds the long-time limit

I(Q,t — o0) = %Ze_ZWJ(QvO) =: fq. (14)

This value is called th®ebye-Waller factgror, if one wants to emphasize the distinction be-
tween incoherent and coherent scattering Lifw@mb-Mssbauer factoor theelastic incoherent
structure factor(EISF). The Fourier transform of (11) gives

S(va) = fQé(w) + (1 - fQ)Sinelast(Qaw)- (15)

Here the EISF reappears as the amplitude of the elastic ldedtaand its complement as the
intensity of the inelastic phonon spectrum. In a first appration, this spectrum is propor-
tional to thevibrational density of state@/DOS) g(w), divided byw?. As soon as one goes
beyond the first approximation, the extraction of a VDOS fioglastic neutron scattering data
becomes a tour de force of non-linear, interdependent ciores.

But even the elastic intensity contaissmeinformation about the VDOS: Assuming that
there is just one type of scatterers, Egs. (13) and (14) gecwisimple expression for theean
squared displaceme(SD)

2
2\ _ (u?) _—Injfg
<uz> - 3 - QZ ’ (16)
On backscattering instruments, one can rather comfortaelysuref, as function of temper-
atureT (elastic temperature scan with no Doppler modulation ofitic&ent neutron energy).
From the slope of- In fo(T') versus@? one obtains the MSD.
The MSD in turn is a temperature weighed moment of the VDOS,

h g(w) fuw
2\ _
<ux> = %m /dw - coth T @an

Approximating the VDOS by th®ebye model

9w?

— for0 < w < wp,

gp(w) =141 “b (18)
0 else,
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Fig. 1. Temperature dependence of the mean squared displacembgtiated myoglobin,
measured by thermal neutron backscattering (IN13 at IL&dlrawn from the seminal work by
Doster, Cusack, and Petry (1989) [2]. The solid lines indgkctine asymptotes (19) expected for
harmonic vibrations, with a clear crossover from quanturmozeoint oscillations to a linear
regime. Anharmonic contribution appear above 150 K, andgase strongly above 180 K. In
the last 20 years, this “protein dynamic transition” has Ineatensely studied, but its nature is
still disputed [3].

and expressing the cut-off frequenegy, through the equivalendebye temperatur®p =
hwp / kg, we find the asymptotes

2
i forT <« ©p,
o\ . 4ﬁlkB()D
() = 32 T (19)
— forT .
ﬂlkB()[)()D or > ()D

At T ~ ©p/4, the MSD crosses over from temperature-independent quaméno-point 0s-
cillations to a linear temperature dependence. This cv@sse indeed regularly observed in
the low-temperature part of elastic scans. At higher teatpees, deviations from the linear
behavior(u?) oc T reveal the onset of anharmonic motion (Fig. 1).

2.3 Quasielastic broadening; localized versus diffusive ation

The quantum theory of harmonic vibrations has provided uk @iclear decomposition (15)
of the scattering function into an elastic peak and a broashph spectrum. This is no longer
the full story if there are non-vibrational degrees of freed due for instance to molecular
rotation or atomic diffusion. In such cases, the elastitadeinction is expected toroadeninto

a quasielastic spectrum. However, if the non-vibrationatiom is much slower than typical
vibrations, the overall structure of Eq. (15) remains a gapplroximation:

S(Q,w) = foSqens(Q,w) + (1 — fqQ)Sinclast (Q, w). (20)

If there is no clear separation of time scales, it may be mppeapriate to replace;,....; by a
convolutionSqens ® Sinelast-

The replacement af(w) by Sqens(Q, w) does not necessarily mean that there is no more
central delta line. In the next section, we will discuss juamal rotator models for which the
guasielastic scattering has the form

Sqexs(Q, w) = agd(w) + b(Q,w). (21)
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The presence of an elastic line ensures that the interneesitattering function has a nonzero
long-time limit/(Q,t — o0) = fqaq. This is the defining characteristic licalized motion
the scatterers remain confined to a finite region in spacehdmpposite case dbng-ranged
diffusion /(Q, t) has the long-time limit 0, andqrxs has no delta component.

We also need to generalize the mean squared displacemémicdines a time-dependent
function that can be computed as the second moment of the@eélation function,

() = [@rr? o) @)

2.4 Important fit functions

When it comes to fitting QENS data, one usually starts witly eémple model functions like
a Lorentzian, and in many cases this is all one needs. Leteusftire collect some basic facts
about a few fit functions.

Computationally the simplest fit function is the Gaussiamfdgtunately, it has few appli-
cations beyond the textbook case of an ideal gas (lecture ABprmalized Gaussian, as one
would use to fit a scattering function, has the standard form

1 2 2
G(w;T) = \/%Fe_“’ /2, (23)

Its Fourier transform, corresponding to the intermediaggtsring function, is also a Gaussian:

G(t;T) = e /2, (24)

which is perfectly consistent with the short-time expangi). The width of a Gaussian spec-
trum is often expressed by itsll width at half maximun{fFWHM), which can be easily com-
puted as/8 In 2I". Intermediate scattering functions are usually charesediby amean relax-
ation time
7) = [ 410 =75(Q.0) (25)
0

For the Gaussian, one finds) = /7/2/I.

Diffusion, jump processes, and rotations can all be modé&levariants of thenaster equa-
tion, leading to a_orentzianscattering function. The normalized Lorentzian, in mathBos
known as theCauchy distributionhas the form

1 T
)= ——. 2
Its Fourier transform is a simple exponential,
L(T) =e T (27)

The FWHM is2I', and the mean relaxation tinje) = 1/I". The exponential (27) isotcompat-

ible with the short-time expansion éf(), ¢t): the master equation does not adequately capture
the ballistic short-time regime. The limited range of valibf Lorentzian fits is also obvious
from the fact that the Cauchy-Lorentz distribution doespudsess a second moment, whereas
a sum rule relates the second momen$ ), w) to the velocity autocorrelation function.
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Fig. 2: Spectra of the hydrated protein c-phycocyanin, measuretheitbackscattering spec-
trometer SPHERES of JCNS. Solid lines are fit with a Kohlranafliams-Watts function
(6 = 0.5), numerically convolved with the resolution measured & ¥0(black symbols);
abover 240 K, this function becomes inadequate, and measumts over a wider energy range
are needed to establish a physically valid descriptior56f),w). As in many other QENS
experiments, quasielastic scattering first appears deaparwings of the resolution function,
whereas no broadening can be seen at half maximum (insedyai®a from [4].

Another important fit function is thstretched exponential functipwhich is defined in the
time domain as

Ks(t;7) = et/ (28)

Its Fourier transform, often called ti@hlrausch-Williams-Wattginction, must be computed
numerically except in a few special casgs=£ 0.5, 1, 2). With typical values of3 between 0.4
and 0.8, it is often used to describe relaxation in viscapsgdis; with the special valué = 0.5,

it includes a key result of the Rouse model for polymer matitts characteristic relaxation
time is(r) = 7['(1/5) /5 wherel'() is the gamma function.

2.5 Instrumental resolution

Every spectrometer has a finitesolution It can be described as a conditional probability
R(w|w’) that a scattering event with an energy transferobfs registered in the channel.
Accordingly, a true, ‘theoretical’ spectruisi®(w’) gives rise to an observed, ‘experimental’
spectrum

S*(w) = /dw'R(w|w’)Sth(w'). (29)

In QENS, it is a good approximation th&tdepends only on the energy differenédw|w’) =
R(w — w'). Under this assumption, (29) is a convolution integral,

S = R@ S (30)
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Fig. 3: Intermediate scattering function of the glass-formingiicgjortho-terphenyl, measured
on three different spectrometers of the ILL, and combinéer &ourier deconvolution. Solid
lines are fits with a mode-coupling scaling function. Redrdwem [5].

for short, andr can be experimentally determined by measuring the spedfamaterial that
is known to be a purely elastic scatterer, sifte 6 = R.4

The resolution functions of time-of-flight and backscattgispectrometers are in a first ap-
proximation Gaussian. Typical scattering functions aralitatively different in shape. When
scaled for equal maximum and equal width at half maximum, eehizian (anda fortiori
a Kohlrausch-Williams-Watts function) has much broadengsi than a Gaussian. In conse-
guence, the onset of quasielastic scattering is regulatgctied as additional scattering deep
in the wings of the resolution function before any broadgngobserved in the width at half
maximum (Fig. 2). For this reason, in high-resolution neatscattering the signal-to-noise
ratio is a more important figure of merit than the nominal heson width.

In principle, resolution effects can be removed from expental data by Fourier deconvo-
lution:
I(t
I'"(t) = — ( ). (31)
R(t)

The number of independenipoints is limited by the Nyquist sampling theorem. For mdst o
theset, (31) results in the division of two small, noisy numbersefidfore one must introduce
a cut-off time, restricting ™ to a relatively small number of short-time data points.

so that one has to restrict the computation to a relativelgllsnumber of short-time data
points. This loss of information is normally not acceptahitestead of deconvoluting experi-
mental data, it is preferable to fit the measured d&tavith a theoretical functior$*™® that has
been numerically convolved with the measured resoluiidor a smoothened model thereof).
However, explicit Fourier deconvolution is attractive étmmbining spectral measurements from
different spectrometers (Fig. 3) or for comparing neutrcattering with molecular dynamics
simulations.

4Some phonon scattering can be tolerated in the resoluti@sunement, since it occurs mostly outside the
energy window relevant for QENS. In practice, the resolutieeasurement is usually done either on vanadium
(which is a perfectly incoherent scatterer so that the samgsarement can also be used for detector calibration)
or on the sample at low temperature (which has the advanfdggrg as close as possible to the conditions of the
production measurements).
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Fig. 4: Atomic dynamics of liquid Zr-Ni, investigated with the thofeflight spectrometer
TOFTOF at FRM lI, redrawn from [6]. (a) Selected spectra witbrentzian fits (34). The
dashed Gaussian with a FWHM of 9V is an idealized representation of the instrumental
resolution. (b) Linewidth$'y, from Lorentzian fits to the measured spectra. For sr@althe
scattering is dominated by incoherent contributions fromTherefore, the initial slope df
vs.(Q? yields the self-diffusion coefficient of Ni.

3 Application Examples

3.1 Diffusion

Diffusion has been discussed in much detail in lecture B3.ddiave the incoherent scatter-
ing function for a diffusing particle, we equate the spaogetprobability distribution function
P(r,t) introduced in section 2.2 of B3 with the classical approxiorato the self-correlation
function introduced in Eq. (9) of the present lecture. Wetbam immediately copy the solution
of the standard diffusion equation,

G(r, 1) = me-ﬁ/wt. (32)
By Fourier transform, we find the intermediate scatteringction
1(Q,t) = exp(~DQ’t) = L(t; DQ?), (33)
and by looking up (26) we obtain the scattering function
S(Q,w) = L(w; DQ?). (34)

On a time-of-flight spectrometer, with experimental scaltthe order) ~ A7 andhiw ~
0.1...10 meV, one can resolve diffusion coefficierisof the orderl0=1°... 1078 m%/s.

The straightforward determination d? from Lorentzian fits (34) works best in simple
atomic systems. Recent examples are provided by metallis mehich can be studied under
very clean experimental conditions using electromagnetitation (Fig. 4). Results improve
significantly upon macroscopic laboratory measuremerissiiffer from convective contribu-
tions.

In molecular liquids the applicability of (34) is not as@nted a priori because the atomic
motion seen by neutron scattering is a superposition of cotde translation, molecular ro-
tation, and innermolecular vibrations and rearrangemeitss has been demonstrated very
clearly in a systematic study of alkanesHs,, . » (Fig.5).
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Fig. 5: Hydrogen dynamics im-alkanes. (a) Diffusion coefficierd®, determined by pulsed-
field gradient NMR and by neutron scattering using TOFTOFRIMAI. The Data points agree
only for the shortest molecule (= 8). In longer chains, QENS deviates from NMR because it
measures not only center-of-mass molecular translatiabalso rotation and innermolecular
motion. Redrawn from [7]. (b) In an exemplary series of TOFTi@easurements with different
instrumental resolutions (expressed through a resolutiore), oversimplified fits have been
shown to result in a resolution dependence of the appardhision coefficients. Redrawn
from [8].

3.2 Jumps between two positions

In the simplest jump model, we consider jumps of a proton betwtwo positions:; andr,.
This two-site jump model has only few applications, but libaks us to introduce concepts that
come to fruition in the study of molecular rotation.

The probabilityp(r, t) of finding the proton at time at siter obeys the rate equation

d [ p(rit) \ A=A p(ry,t)
— = — (35)
dt \ p(ra,t) AN p(ra,t)
with transition rates\,,. The matrix has the eigenvalues 0 and:= \; + \,, so that the
rate equation is solved by(r,,,t) = a,, + b, exp(—I't). In the long-time limitt — oo, the

occupation ratio must g /p, = Ao/ A to satisfydp/dt = 0. Combined with the normalization
condition p(r,,t) = 1, we find

A A
= —2 g9 = p(’l“g, OO) = —1 (36)

alzp(rboo)_ Fu T
Imposing the initial conditiom(r,0) = 1, we compute the conditional probabilities

p(r1,tlr1,0) = a1 + ag exp(—TIt), @37)
p(ra,t|r1,0) = as (1 — exp(—Tt)),

and similarly forp(r,,0) = 1. Using the equilibrium occupation probabilities (36), antfo-
ducing the jump vectodl := r, — r{, we obtain the intermediate self correlation function

HQu) = (e9rear)
= p<rl7 OO) [p(rb t‘rh 0) + p<r27 t‘rb O)eiQd} + (38)

p(1r3,00) [p('rg,t\rl, 0) + p(ry, t|ry, O)e—iQd] .
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Regrouping terms, abbreviating

Ao(Q) :
A1(Q) = 2a1a3(1 — cos Qd),

a? + a3 + 2a,a; cos Qd,

(39)

and evaluating the Fourier transformesdp(—I't), we get the incoherent scattering function

S(Q,w) = Ao(Q)d(w) + A1 (Q)L(w; T), (40)

which consists of an elastic line and a quasielastic compiotige latter having standard Lor-
entzian shape (26). As discussed above, the presence oéstit dine is characteristic for
localized motion Since the jumping proton is confined to a finite region in sp#és self corre-
lation function never decays to zero.

For measurements performed on powder samples, we averagthewrientations of,

- 1 [T in Qd

cos Qd = E/o dd 27 sin ¥ cos(Qd cos ) = 81223
where the last equation introduces a customary abbrenijati@ spherical Bessel functiggp.
In the simplest case, for jumps between two equivalent posit we have\; = \; anda; =
as = 1/2, so that the powder-averaged amplitudes take the form

Ao(Q) = (1 +o(Qd))/2,

(42)
A1(Q) = (1= jo(Qd))/2.

3.3 Rotational jump diffusion

To discuss the rotation of molecules or molecular side gsongolids we choose a simple and
practically important example, a methyl group R—CM/e consider the group as stiff (CH bond
lengthd = 1.097 & 0.004 A, HCH anglef = 106.5 + 1.5°). The only degree of freedom is the
rotation around the bond that connects the methyl groupdadmainder R of the molecule.
This R—C bond coincides with the symmetry axis of the;@rbup. The corresponding moment
of inertia is

I=> md} =2md*(1 - cos). (43)

The rotational motion can be described by a wave functidhat depends on one single coor-
dinate, the rotation angle. The Schrodinger equation is

02
{Ba - Vo) + B} v -0 (a4)
with therotational constant )
B := % =670 peV. (45)

For free rotation ¥ = 0), solutions that possess the requested periodicity aseasid cosine
functions of argumenf ¢, with integer.J. Accordingly, the energy levels afe = B.J>.

In condensed matter, however, the potentiataused by the local environment cannot be
neglected. Due to the symmetry of the Coroup, the Fourier expansion &f(¢) contains
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Fig. 6: Backscattering spectra of (GNHs)5Bi,Br, measured on SPHERES [9]. The five methy-
lammonium cations fall into two different categories: abno temperature, two of them are
ordered, three are disordered [10]. Therefore, we fitted spectra with two Lorentzians with
an amplitude ratio of 2:3. The resulting relaxation timewvaan Arrhenius temperature depen-
dence, shown in the inset.

only sine and cosine functions with argum@ni¢, with integerm. In most applications, it is
sufficient to retain only one term,

V(¢) = Vscos(3¢). (46)

The strength of the potential can then be expressed by thendionless numbér; / B. In the
following we specialize to the case oft&rong potentiglVs; /B > 10, which is by far the most
frequent one.

In a strong potential of form (46), the GHjroup has three preferential orientations, sep-
arated by potential walls. The motion of the CHroup consists mainly of small excursions
from the preferred orientations, callédrations. Quantum-mechanically, they are zero-point
oscillations in an approximately harmonic potential.

Orientational motion can be approximated as thermallyatgdjump diffusionbetween
equivalent equilibrium positions. For instance, to conepgntoherent scattering from a rotating
methyl (CH;) group, it can be sufficient to consider 23amps between three equivalent rest
positions on a circle of radius

This requires only a little extension of the two-site jumpdabintroduced above. The
transition matrix in the rate equation takes the form

92X —A —\
. (47)
A A 2)

which has the eigenvalues ®), 3\. Thanks to the degeneracy of the nonzero eigenvalue, the
scattering law retains the simple form (40), with= 3\, and with amplitudes

A0(Q) = (1 +2jo(Qrv/3)) /3,
A1(Q) = (2 - 2jo(QdV3))/3.

This model has proven successful in a huge number of expetaneig. 6 shows an arbitrarily
chosen recent example.

(48)
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Fig. 7: Backscattering spectra of the perovskite (\PdCl;, measured on SPHERES [12].
The inelastic lines are due to rotational tunneling of the Ngtoup. The energy-level scheme
holds for tetrahedral symmetry at the Nikites if the probability of 180jumps is negligible
compared to 120jumps [13]. Only the E>T transition is observed, except at 34 K where also
the A= T transition fits into the experimental energy range.

However, Eq. (40) must be modified if the rotational potdriies aC; symmetry. Then
there are six equivalent equilibrium positions, connedig®O jumps, so that the transition
matrix is of rank 6. After some computation it is found to h#élveee different non-zero eigen-
valuesI',. In such a situation, the inelastic part of scattering lawlarmer factorises into a
() dependent and @ dependent function. Instead, one has a sum of Lorentziadgfefent
widths:

S(Q,w) = Ap(Q)(w) + Y Au(Q)L(w;Ty). (49)

This equation holds quite generally for systems descrilyed fate equation of the form (35)
with an arbitrary, symmetric transition matrix. In partigy it holds for rotational jump diffu-
sion of molecules that have more than one axis of rotatiop [11

3.4 Rotational tunneling

At low temperatures, almost exclusively the vibrationadigrd state is occupied. Yet reorien-
tational motion beyond librations is possible by means @fmum mechanical tunneling: The
wave functions of the three localisgubcket states),, (m = 1,2,3) have nonzero overlap.
Therefore, the eigenstates are a linear combination ofgistites. Periodicity and threefold
symmetry allow three such combinations: a plain additive on

1 + Yo + 3, (50)

and two superpositions with phase rotations

¢1 +e:|:i27r/3,¢2 +e:|:i47r/3,¢3‘ (51)

SThis is an extremely simplified outline of the theory. In aises treatment, to get all symmetry requirements
right, one must also take into account the nuclear spinseofithtoms [14].
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In the language of group theory, state (50) has symmairyhe degenerate states (51) are
labelled E2, E®. It is found thatA is the ground state. Thinneling splittingss2, between
the statesdA and £ is determined by the overlap integrat,,|V |¢,,) (m # n), which depends
exponentially on the height of the potential wall. Expenntgethat detect tunneling transitions
provide therefore a very sensitive probe of the rotatioméeptial, conversely, if the potential
is not accurately known, it is almost impossible to preditether a tunneling transition will
show up in a given experimental energy range.

In neutron scattering, a tunneling transition appears aairaop inelastic peaks at-A£);.
The spectral shape of these peaks is well described by LmaestC(w + ;). With rising
temperatures, the occupancy of excited vibrational levaelsease. This facilitates transitions
betweend and E sublevels and results in a decreas@&@f and an increase of the line width

Upon further temperature increase, thermal motion of ri@ghing molecules causes so
strong potential fluctuations that the picture of quantummaling is no longer applicable. In-
stead, the motion between different pocket states mustdmitled astochastic jump diffusign
as exposed above.

For systems with more than one rotational axis, group thesouged to identify eigenstate
symmetries. For instance for tetrahedral Nidns in tetrahedral cages, three energy levels are
found, with a transition energy ratio &y = 2Qgr (Fig. 7).
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