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1 Introduction

The term ‘quasielastic scattering’ designates a limiting case of inelastic scattering that is close
to elastic scattering. There are different ways to specify what ‘close’ means. In a wider sense,
it is only required that the energy transfer be small compared to the incident energy of the scat-
tered particles. This is how the word ‘quasielastic’ originally was coined in nuclear physics. In a
narrower sense, aquasielastic lineis a spectral feature centered around the elastic peak. A very
special use or abuse of the term ‘quasielastic’ shall only bementioned in passing:quasielas-
tic light scattering, also calleddynamic light scatteringor (much more to the point)photon
correlation spectroscopy.2

Quasielastic neutron scattering(QENS) is used to study atomic and molecular modes of
motion that are slower than the phonons typically studied ona triple-axis spectrometer. A lower
bound for the energy transfers is set by the resolution of available spectrometers. In the fol-
lowing, we will only discuss energy-resolved measurementson time-of-flight or backscattering
spectrometers, refering to another lecture (D8) for the spin-echo method, which is special in sev-
eral respects (implicit Fourier transform, preference forcoherent scattering, focus on smallq).
Accordingly, we are concerned with energy transfers of the order ofµeV to meV, correspond-
ing to time scales of ns to ps. Motion on this time-scale involves molecular reorientations and
certain slow oscillations as well as jump processes that addup to diffusion or relaxation.

Depending on the isotopic composition of the sample, neutron scattering can be dominated
by coherent or incoherent contributions (lecture A4). Coherent scattering conveys richer infor-
mation, but is more difficult to interpret. On time-of-flightand backscattering spectrometers, by
far the majority of experiments is concerned with incoherent scattering. In particular, whenever
a sample contains hydrogen, this element is likely to dominate the total cross section, except if
the material is fully deuterated. In this lecture we will concentrate on the most simple and most
important use of QENS:incoherent scatteringby hydrogen.

2 Basics

2.1 Self correlation functions

Incoherent neutron scattering measuresself correlationsof tagged particles. Assuming that
there is just one noteworthy species of scatterers, the double differential cross section can be
written as3

∂2σ

∂Ω∂ω
=
σinc
4π

kf
ki
Sinc(Q, ω). (1)

For the remainder of this lecture, the subscript ‘inc’ will be omitted. Let us summarize a few
relations from lecture A5. Thescattering functionS(Q, ω) is best expressed via a Fourier
transform in time,

S(Q, ω) =
1

2π

∫

dt e−iωt I(Q, t), (2)

2In photon-correlation spectroscopy, scattered photons are counted regardless of their energy; photon counts
are then correlated by some real-time electronics. This hasalmost nothing in common with quasielastic neu-
tron scattering. The light scattering analogue of quasielastic neutron scattering is called high-resolution inelastic
light scattering orRayleigh-Brillouin scattering; to analyse the energy of scattered photons either a Fabry-Perot
interferometer or a high-resolution grating spectrometeris used.

3Only here,Ω stands for a solid angle. Later on, we will reuse the symbolΩ to designate characteristic
frequencies of our model systems.
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with the intermediate scattering function

I(Q, t) =
1

N

∑

j

〈

e−iQr̂j(0)eiQr̂j(t)
〉

. (3)

Its initial value isI(Q, 0) = 1. In the ballistic short-time regime (for times that are short
compared to a typical phonon period), it has the expansion

I(Q, t) =
1

N

∑

j

〈

eiQvj(0)
〉 .
= 1− 1

2
Ω2

Qt
2 + . . . (4)

with a frequencyΩQ that depends onQ and on the mean squared thermal velocity:

Ω2
Q :=

1

N

∑

j

〈

(Qvj(0))
2〉 =

Q2

3

1

N

∑

j

〈

vj(0)
2
〉

= Q2kBT
1

N

∑

j

1

mj

. (5)

SinceΩQ lies far outside the dynamic range of the spectrometers usedfor QENS, the short-time
expansion has only theoretical importance.

An additional Fourier transform in space,

I(Q, t) =

∫

d3r eiQrGs(r, t) (6)

relates the intermediate scattering function to the self-correlation function

Gs(r, t) =
1

N

∑

j

∫

d3r′ 〈 δ(r− r′ + r̂j(0)) δ(r
′ − r̂j(t)) 〉 . (7)

Before taking the classical limit, it is advisable to correct for detailed balance, introducing the
symmetrized scattering law

S̃(Q, ω) := e~ω/2kBTS(Q, ω). (8)

In the classical limit, the position operators commute, andthe symmetrized self-correlation
functionG̃s is approximated by

Gcl
s (r, t) =

1

N

∑

j

〈 δ(r− r̂j(t) + r̂j(0)) 〉 . (9)

2.2 Harmonic vibrations and the mean squared displacement

Before turning to the slow, anharmonic modes of motion that are typically studied by QENS,
we briefly review scattering by harmonic vibrations (compare lecture B4). This analytically
tractable reference case helps us to introduce important concepts like elastic incoherent structure
factor and the mean squared displacement, which later on will be generalized for non-harmonic
systems.

Vibrations are described in terms of displacementsuj(t) from equilibrium positionsRj,

rj(t) = Rj + uj(t). (10)
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Eq. (3) keeps its form under this transformation, except that therj are substituted byuj . If the
particlesj are only subject to harmonic forces, then the Bloch theorem [1] allows the simplifi-
cation

I(Q, t) =
1

N

∑

j

e−2Wj(Q,0)e2Wj(Q,t) (11)

with
2Wj(Q, t) := 〈 (Quj(0))(Quj(t)) 〉 . (12)

In isotropic systems, an orientational average gives

2Wj(Q, t) =
Q2

3
〈uj(0)uj(t) 〉 . (13)

Each particle partakes in a huge number of oscillatory modes, which quickly run out of phase.
Therefore, within little more than one typical phonon period, 2Wj(Q, t) approaches 0. In con-
sequence, the intermediate scattering function convergestowards the long-time limit

I(Q, t→ ∞) =
1

N

∑

j

e−2Wj(Q,0) =: fQ. (14)

This value is called theDebye-Waller factor, or, if one wants to emphasize the distinction be-
tween incoherent and coherent scattering, theLamb-M̈ossbauer factoror theelastic incoherent
structure factor(EISF). The Fourier transform of (11) gives

S(Q, ω) = fQδ(ω) + (1− fQ)Sinelast(Q, ω). (15)

Here the EISF reappears as the amplitude of the elastic deltaline, and its complement as the
intensity of the inelastic phonon spectrum. In a first approximation, this spectrum is propor-
tional to thevibrational density of states(VDOS) g(ω), divided byω2. As soon as one goes
beyond the first approximation, the extraction of a VDOS frominelastic neutron scattering data
becomes a tour de force of non-linear, interdependent corrections.

But even the elastic intensity containssomeinformation about the VDOS: Assuming that
there is just one type of scatterers, Eqs. (13) and (14) provide a simple expression for themean
squared displacement(MSD)

〈

u2x
〉

=
〈u2〉
3

=
− ln fQ
Q2

. (16)

On backscattering instruments, one can rather comfortablymeasurefQ as function of temper-
atureT (elastic temperature scan with no Doppler modulation of theincident neutron energy).
From the slope of− ln fQ(T ) versusQ2 one obtains the MSD.

The MSD in turn is a temperature weighed moment of the VDOS,

〈

u2x
〉

=
~

6m

∫

dω
g(ω)

ω
coth

~ω

2kBT
. (17)

Approximating the VDOS by theDebye model,

gD(ω) =











9ω2

ω3
D

for 0 ≤ ω ≤ ωD,

0 else,

(18)
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Fig. 1: Temperature dependence of the mean squared displacement inhydrated myoglobin,
measured by thermal neutron backscattering (IN13 at ILL), redrawn from the seminal work by
Doster, Cusack, and Petry (1989) [2]. The solid lines indicate the asymptotes (19) expected for
harmonic vibrations, with a clear crossover from quantum zero-point oscillations to a linear
regime. Anharmonic contribution appear above 150 K, and increase strongly above 180 K. In
the last 20 years, this “protein dynamic transition” has been intensely studied, but its nature is
still disputed [3].

and expressing the cut-off frequencyωD through the equivalentDebye temperatureΘD :=
~ωD/kB, we find the asymptotes

〈

u2x
〉 .
=



















3~2

4mkBΘD
for T ≪ ΘD,

3~2

mkBΘD

T

ΘD
for T ≫ ΘD.

(19)

At T ≃ ΘD/4, the MSD crosses over from temperature-independent quantum zero-point os-
cillations to a linear temperature dependence. This crossover is indeed regularly observed in
the low-temperature part of elastic scans. At higher temperatures, deviations from the linear
behavior〈u2x〉 ∝ T reveal the onset of anharmonic motion (Fig. 1).

2.3 Quasielastic broadening; localized versus diffusive motion

The quantum theory of harmonic vibrations has provided us with a clear decomposition (15)
of the scattering function into an elastic peak and a broad phonon spectrum. This is no longer
the full story if there are non-vibrational degrees of freedom, due for instance to molecular
rotation or atomic diffusion. In such cases, the elastic delta function is expected tobroadeninto
a quasielastic spectrum. However, if the non-vibrational motion is much slower than typical
vibrations, the overall structure of Eq. (15) remains a goodapproximation:

S(Q, ω) ≃ fQSQENS(Q, ω) + (1− fQ)Sinelast(Q, ω). (20)

If there is no clear separation of time scales, it may be more appropriate to replaceSinelast by a
convolutionSQENS ⊗ Sinelast.

The replacement ofδ(ω) by SQENS(Q, ω) does not necessarily mean that there is no more
central delta line. In the next section, we will discuss jumpand rotator models for which the
quasielastic scattering has the form

SQENS(Q, ω) = aQδ(ω) + b(Q, ω). (21)
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The presence of an elastic line ensures that the intermediate scattering function has a nonzero
long-time limit I(Q, t → ∞) = fQaQ. This is the defining characteristic oflocalized motion:
the scatterers remain confined to a finite region in space. In the opposite case oflong-ranged
diffusion, I(Q, t) has the long-time limit 0, andSQENS has no delta component.

We also need to generalize the mean squared displacement. Itbecomes a time-dependent
function that can be computed as the second moment of the self-correlation function,

〈

r2(t)
〉

:=

∫

d3r r2Gs(r, t). (22)

2.4 Important fit functions

When it comes to fitting QENS data, one usually starts with very simple model functions like
a Lorentzian, and in many cases this is all one needs. Let us therefore collect some basic facts
about a few fit functions.

Computationally the simplest fit function is the Gaussian. Unfortunately, it has few appli-
cations beyond the textbook case of an ideal gas (lecture A5). A normalized Gaussian, as one
would use to fit a scattering function, has the standard form

G(ω; Γ) := 1√
2πΓ

e−ω2/2Γ2

. (23)

Its Fourier transform, corresponding to the intermediate scattering function, is also a Gaussian:

G̃(t; Γ) = e−Γ2t2/2, (24)

which is perfectly consistent with the short-time expansion (4). The width of a Gaussian spec-
trum is often expressed by itsfull width at half maximum(FWHM), which can be easily com-
puted as

√
8 ln 2Γ. Intermediate scattering functions are usually characterised by amean relax-

ation time,

〈τ〉 :=
∫

∞

0

dt I(Q, t) = πS(Q, 0). (25)

For the Gaussian, one finds〈τ〉 =
√

π/2/Γ.
Diffusion, jump processes, and rotations can all be modelled by variants of themaster equa-

tion, leading to aLorentzianscattering function. The normalized Lorentzian, in mathematics
known as theCauchy distribution, has the form

L(ω; Γ) := 1

π

Γ

Γ2 + ω2
. (26)

Its Fourier transform is a simple exponential,

L̃(t; Γ) = e−Γt. (27)

The FWHM is2Γ, and the mean relaxation time〈τ〉 = 1/Γ. The exponential (27) isnotcompat-
ible with the short-time expansion ofI(Q, t): the master equation does not adequately capture
the ballistic short-time regime. The limited range of validity of Lorentzian fits is also obvious
from the fact that the Cauchy-Lorentz distribution does notpossess a second moment, whereas
a sum rule relates the second moment ofS(Q, ω) to the velocity autocorrelation function.
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Fig. 2: Spectra of the hydrated protein c-phycocyanin, measured onthe backscattering spec-
trometer SPHERES of JCNS. Solid lines are fit with a Kohlrausch-Williams-Watts function
(β = 0.5), numerically convolved with the resolution measured at 100 K (black symbols);
abover 240 K, this function becomes inadequate, and measurements over a wider energy range
are needed to establish a physically valid description ofS(Q, ω). As in many other QENS
experiments, quasielastic scattering first appears deep inthe wings of the resolution function,
whereas no broadening can be seen at half maximum (inset). Redrawn from [4].

Another important fit function is thestretched exponential function, which is defined in the
time domain as

K̃β(t; τ) := e−(t/τ)β . (28)

Its Fourier transform, often called theKohlrausch-Williams-Wattsfunction, must be computed
numerically except in a few special cases (β = 0.5, 1, 2). With typical values ofβ between 0.4
and 0.8, it is often used to describe relaxation in viscous liquids; with the special valueβ = 0.5,
it includes a key result of the Rouse model for polymer motion. Its characteristic relaxation
time is〈τ〉 = τΓ(1/β)/β whereΓ() is the gamma function.

2.5 Instrumental resolution

Every spectrometer has a finiteresolution. It can be described as a conditional probability
R(ω|ω′) that a scattering event with an energy transfer ofω′ is registered in the channelω.
Accordingly, a true, ‘theoretical’ spectrumSth(ω′) gives rise to an observed, ‘experimental’
spectrum

Sex(ω) =

∫

dω′R(ω|ω′)Sth(ω′). (29)

In QENS, it is a good approximation thatR depends only on the energy difference,R(ω|ω′) =
R(ω − ω′). Under this assumption, (29) is a convolution integral,

Sex = R⊗ Sth (30)
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Fig. 3: Intermediate scattering function of the glass-forming liquid ortho-terphenyl, measured
on three different spectrometers of the ILL, and combined after Fourier deconvolution. Solid
lines are fits with a mode-coupling scaling function. Redrawn from [5].

for short, andR can be experimentally determined by measuring the spectrumof a material that
is known to be a purely elastic scatterer, sinceR ⊗ δ = R.4

The resolution functions of time-of-flight and backscattering spectrometers are in a first ap-
proximation Gaussian. Typical scattering functions are qualitatively different in shape. When
scaled for equal maximum and equal width at half maximum, a Lorentzian (anda fortiori
a Kohlrausch-Williams-Watts function) has much broader wings than a Gaussian. In conse-
quence, the onset of quasielastic scattering is regularly detected as additional scattering deep
in the wings of the resolution function before any broadening is observed in the width at half
maximum (Fig. 2). For this reason, in high-resolution neutron scattering the signal-to-noise
ratio is a more important figure of merit than the nominal resolution width.

In principle, resolution effects can be removed from experimental data by Fourier deconvo-
lution:

Ith(t) =
Iex(t)

R̃(t)
. (31)

The number of independentt points is limited by the Nyquist sampling theorem. For most of
theset, (31) results in the division of two small, noisy numbers. Therefore one must introduce
a cut-off time, restrictingIth to a relatively small number of short-time data points.

so that one has to restrict the computation to a relatively small number of short-time data
points. This loss of information is normally not acceptable; instead of deconvoluting experi-
mental data, it is preferable to fit the measured dataSex with a theoretical functionSth that has
been numerically convolved with the measured resolutionR (or a smoothened model thereof).
However, explicit Fourier deconvolution is attractive forcombining spectral measurements from
different spectrometers (Fig. 3) or for comparing neutron scattering with molecular dynamics
simulations.

4Some phonon scattering can be tolerated in the resolution measurement, since it occurs mostly outside the
energy window relevant for QENS. In practice, the resolution measurement is usually done either on vanadium
(which is a perfectly incoherent scatterer so that the same measurement can also be used for detector calibration)
or on the sample at low temperature (which has the advantage of being as close as possible to the conditions of the
production measurements).
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Fig. 4: Atomic dynamics of liquid Zr-Ni, investigated with the time-of-flight spectrometer
TOFTOF at FRM II, redrawn from [6]. (a) Selected spectra withLorentzian fits (34). The
dashed Gaussian with a FWHM of 95µeV is an idealized representation of the instrumental
resolution. (b) LinewidthsΓQ, from Lorentzian fits to the measured spectra. For smallQ, the
scattering is dominated by incoherent contributions from Ni. Therefore, the initial slope ofΓQ

vs.Q2 yields the self-diffusion coefficient of Ni.

3 Application Examples

3.1 Diffusion

Diffusion has been discussed in much detail in lecture B3. Toderive the incoherent scatter-
ing function for a diffusing particle, we equate the space-time probability distribution function
P (r, t) introduced in section 2.2 of B3 with the classical approximation to the self-correlation
function introduced in Eq. (9) of the present lecture. We canthen immediately copy the solution
of the standard diffusion equation,

Gcl
s (r, t) =

1

(4πDt)3/2
e−r2/4Dt. (32)

By Fourier transform, we find the intermediate scattering function

I(Q, t) = exp(−DQ2t) = L̃(t;DQ2), (33)

and by looking up (26) we obtain the scattering function

S(Q, ω) = L(ω;DQ2). (34)

On a time-of-flight spectrometer, with experimental scalesof the orderQ ∼ Å
−1

and~ω ∼
0.1 . . . 10 meV, one can resolve diffusion coefficientsD of the order10−10 . . . 10−8 m2/s.

The straightforward determination ofD from Lorentzian fits (34) works best in simple
atomic systems. Recent examples are provided by metallic melts, which can be studied under
very clean experimental conditions using electromagneticlevitation (Fig. 4). Results improve
significantly upon macroscopic laboratory measurements that suffer from convective contribu-
tions.

In molecular liquids the applicability of (34) is not ascertained a priori because the atomic
motion seen by neutron scattering is a superposition of molecular translation, molecular ro-
tation, and innermolecular vibrations and rearrangements. This has been demonstrated very
clearly in a systematic study of alkanes CnH2n+2 (Fig.5).
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Fig. 5: Hydrogen dynamics inn-alkanes. (a) Diffusion coefficientD, determined by pulsed-
field gradient NMR and by neutron scattering using TOFTOF at FRM II. The Data points agree
only for the shortest molecule (n = 8). In longer chains, QENS deviates from NMR because it
measures not only center-of-mass molecular translation, but also rotation and innermolecular
motion. Redrawn from [7]. (b) In an exemplary series of TOFTOF measurements with different
instrumental resolutions (expressed through a resolutiontime), oversimplified fits have been
shown to result in a resolution dependence of the apparent diffusion coefficients. Redrawn
from [8].

3.2 Jumps between two positions

In the simplest jump model, we consider jumps of a proton between two positionsr1 andr2.
This two-site jump model has only few applications, but it allows us to introduce concepts that
come to fruition in the study of molecular rotation.

The probabilityp(r, t) of finding the proton at timet at siter obeys the rate equation

d

dt

(

p(r1, t)

p(r2, t)

)

= −
(

λ1 −λ2
−λ1 λ2

)(

p(r1, t)

p(r2, t)

)

(35)

with transition ratesλn. The matrix has the eigenvalues 0 andΓ := λ1 + λ2, so that the
rate equation is solved byp(rn, t) = an + bn exp(−Γt). In the long-time limitt → ∞, the
occupation ratio must bep1/p2 = λ2/λ1 to satisfydp/dt = 0. Combined with the normalization
condition

∑

n p(rn, t) = 1, we find

a1 = p(r1,∞) =
λ2
Γ
, a2 = p(r2,∞) =

λ1
Γ
. (36)

Imposing the initial conditionp(r1, 0) = 1, we compute the conditional probabilities

p(r1, t|r1, 0) = a1 + a2 exp(−Γt),

p(r2, t|r1, 0) = a2 (1− exp(−Γt)) ,
(37)

and similarly forp(r2, 0) = 1. Using the equilibrium occupation probabilities (36), andintro-
ducing the jump vectord := r2 − r1, we obtain the intermediate self correlation function

I(Q, t) = 〈eiQr(t)e−iQr(0)〉

= p(r1,∞)
[

p(r1, t|r1, 0) + p(r2, t|r1, 0)e
iQd

]

+

p(r2,∞)
[

p(r2, t|r1, 0) + p(r1, t|r1, 0)e
−iQd

]

.

(38)
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Regrouping terms, abbreviating

A0(Q) := a21 + a22 + 2a1a2 cosQd,

A1(Q) := 2a1a2(1− cosQd),
(39)

and evaluating the Fourier transform ofexp(−Γt), we get the incoherent scattering function

S(Q, ω) = A0(Q)δ(ω) + A1(Q)L(ω; Γ), (40)

which consists of an elastic line and a quasielastic component, the latter having standard Lor-
entzian shape (26). As discussed above, the presence of an elastic line is characteristic for
localized motion: Since the jumping proton is confined to a finite region in space, its self corre-
lation function never decays to zero.

For measurements performed on powder samples, we average over the orientations ofd,

cosQd =
1

4π

∫ π

0

dϑ 2π sin ϑ cos(Qd cosϑ) =
sinQd

Qd
= j0(Qd), (41)

where the last equation introduces a customary abbreviation, the spherical Bessel functionj0.
In the simplest case, for jumps between two equivalent positions, we haveλ1 = λ2 anda1 =
a2 = 1/2, so that the powder-averaged amplitudes take the form

A0(Q) = (1 + j0(Qd))/2,

A1(Q) = (1− j0(Qd))/2.
(42)

3.3 Rotational jump diffusion

To discuss the rotation of molecules or molecular side groups in solids we choose a simple and
practically important example, a methyl group R–CH3. We consider the group as stiff (CH bond
lengthd = 1.097± 0.004 Å, HCH angleθ = 106.5± 1.5◦). The only degree of freedom is the
rotation around the bond that connects the methyl group to the remainder R of the molecule.
This R–C bond coincides with the symmetry axis of the CH3 group. The corresponding moment
of inertia is

I =
∑

md2
⊥
= 2md2(1− cos θ). (43)

The rotational motion can be described by a wave functionψ that depends on one single coor-
dinate, the rotation angleφ. The Schrödinger equation is

{

B
∂2

∂φ2
− V (φ) + E

}

ψ(φ) = 0 (44)

with therotational constant

B :=
~
2

2I
= 670 µeV. (45)

For free rotation (V = 0), solutions that possess the requested periodicity are sine and cosine
functions of argumentJφ, with integerJ . Accordingly, the energy levels areE = BJ2.

In condensed matter, however, the potentialV caused by the local environment cannot be
neglected. Due to the symmetry of the CH3 group, the Fourier expansion ofV (φ) contains
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Fig. 6: Backscattering spectra of (CH3NH3)5Bi2Br, measured on SPHERES [9]. The five methy-
lammonium cations fall into two different categories: at room temperature, two of them are
ordered, three are disordered [10]. Therefore, we fitted thespectra with two Lorentzians with
an amplitude ratio of 2:3. The resulting relaxation times have an Arrhenius temperature depen-
dence, shown in the inset.

only sine and cosine functions with argument3mφ, with integerm. In most applications, it is
sufficient to retain only one term,

V (φ)
.
= V3 cos(3φ). (46)

The strength of the potential can then be expressed by the dimensionless numberV3/B. In the
following we specialize to the case of astrong potential, V3/B ≫ 10, which is by far the most
frequent one.

In a strong potential of form (46), the CH3 group has three preferential orientations, sep-
arated by potential walls. The motion of the CH3 group consists mainly of small excursions
from the preferred orientations, calledlibrations. Quantum-mechanically, they are zero-point
oscillations in an approximately harmonic potential.

Orientational motion can be approximated as thermally activatedjump diffusionbetween
equivalent equilibrium positions. For instance, to compute incoherent scattering from a rotating
methyl (CH3) group, it can be sufficient to consider 120◦ jumps between three equivalent rest
positions on a circle of radiusr.

This requires only a little extension of the two-site jump model introduced above. The
transition matrix in the rate equation takes the form





2λ −λ −λ
−λ 2λ −λ
−λ −λ 2λ



 , (47)

which has the eigenvalues 0,3λ, 3λ. Thanks to the degeneracy of the nonzero eigenvalue, the
scattering law retains the simple form (40), withΓ = 3λ, and with amplitudes

A0(Q) = (1 + 2j0(Qr
√
3))/3,

A1(Q) = (2− 2j0(Qd
√
3))/3.

(48)

This model has proven successful in a huge number of experiments; Fig. 6 shows an arbitrarily
chosen recent example.
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Fig. 7: Backscattering spectra of the perovskite (NH4)2PdCl6, measured on SPHERES [12].
The inelastic lines are due to rotational tunneling of the NH+

4 group. The energy-level scheme
holds for tetrahedral symmetry at the NH+

4 sites if the probability of 180◦ jumps is negligible
compared to 120◦ jumps [13]. Only the E↔T transition is observed, except at 34 K where also
the A↔T transition fits into the experimental energy range.

However, Eq. (40) must be modified if the rotational potential has aC2 symmetry. Then
there are six equivalent equilibrium positions, connectedby 60◦ jumps, so that the transition
matrix is of rank 6. After some computation it is found to havethree different non-zero eigen-
valuesΓµ. In such a situation, the inelastic part of scattering law nolonger factorises into a
Q dependent and aω dependent function. Instead, one has a sum of Lorentzians ofdifferent
widths:

S(Q, ω) = A0(Q)δ(ω) +
∑

µ

Aµ(Q)L(ω; Γµ). (49)

This equation holds quite generally for systems described by a rate equation of the form (35)
with an arbitrary, symmetric transition matrix. In particular, it holds for rotational jump diffu-
sion of molecules that have more than one axis of rotation [11].

3.4 Rotational tunneling

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-
tational motion beyond librations is possible by means of quantum mechanical tunneling: The
wave functions of the three localisedpocket statesψm (m = 1, 2, 3) have nonzero overlap.
Therefore, the eigenstates are a linear combination of pocket states.5 Periodicity and threefold
symmetry allow three such combinations: a plain additive one

ψ1 + ψ2 + ψ3, (50)

and two superpositions with phase rotations

ψ1 + e±i2π/3ψ2 + e±i4π/3ψ3. (51)

5This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements
right, one must also take into account the nuclear spins of the H atoms [14].
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In the language of group theory, state (50) has symmetryA, the degenerate states (51) are
labelledEa, Eb. It is found thatA is the ground state. Thetunneling splitting~Ωt between
the statesA andE is determined by the overlap integral〈ψm|V |ψn〉 (m 6= n), which depends
exponentially on the height of the potential wall. Experiments that detect tunneling transitions
provide therefore a very sensitive probe of the rotational potential; conversely, if the potential
is not accurately known, it is almost impossible to predict whether a tunneling transition will
show up in a given experimental energy range.

In neutron scattering, a tunneling transition appears as a pair of inelastic peaks at±~Ωt.
The spectral shape of these peaks is well described by LorentziansL(ω ± Ωt; Γ). With rising
temperatures, the occupancy of excited vibrational levelsincrease. This facilitates transitions
betweenA andE sublevels and results in a decrease of~Ωt and an increase of the line widthΓ.

Upon further temperature increase, thermal motion of neighbouring molecules causes so
strong potential fluctuations that the picture of quantum tunneling is no longer applicable. In-
stead, the motion between different pocket states must be described asstochastic jump diffusion,
as exposed above.

For systems with more than one rotational axis, group theoryis used to identify eigenstate
symmetries. For instance for tetrahedral NH+

4 ions in tetrahedral cages, three energy levels are
found, with a transition energy ratio ofΩTA = 2ΩET (Fig. 7).
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